Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UK Astronomers look forward to looking back


When NASA launches its Space Infrared Telescope Facility (SIRTF) - the agency’s fourth ‘Great Observatory’ - later this week, astronomers around the world will be looking forward to using one of the most powerful time machines ever built.

Among those anticipating the opportunity to look back billions of years to an era when the universe was in its youth are Professor Michael Rowan-Robinson (Imperial College London) and Dr. Sebastian Oliver (University of Sussex), who will be participating in the international SIRTF Wide-area InfraRed Extragalactic (SWIRE) survey.

Taking advantage of SIRTF’s ability to detect infrared radiation (heat) from the coolest objects in the universe, the SWIRE team will study galaxies located up to 10 billion light years away where infant stars are beginning to emerge from the dust clouds in which they were born.

Over a period of nine months, the SWIRE survey will observe seven areas of the sky covering a total of 65 square degrees - equivalent to the area taken up by 360 full moons. These areas have been carefully selected because they are exceptionally transparent due to an absence of Galactic dust.

Using all 7 SIRTF wavebands (3.6, 4.5, 5.8, 8, 24, 70 and 160 microns), SWIRE is expected to detect more than 1 million infrared galaxies, many of them dusty, star-forming galaxies that existed when the universe was only about three billion years old.

“We shall be studying star-forming galaxies and quasars at high redshifts, looking far deeper in the infrared than any previous survey,” said Professor Rowan-Robinson, Deputy Principal Investigator for the SWIRE programme.

“By looking back through almost 90% of the universe’s history, we shall be able to look back to a period when star formation was much more frequent than it is today,” he added. “This will enable us to trace the evolution of star formation from very early times.”

“This is the most exciting and the most important project I have ever been involved with,” said Sebastian Oliver, a SWIRE Co-Investigator. “Our infrared survey will be combined with studies by ground-based telescopes (such as the UK Infrared Telescope in Hawaii) and by orbiting observatories, such as the Hubble Space Telescope, Chandra and XMM-Newton, that study the universe at other wavelengths.”

“The SWIRE survey will provide our first glimpse of many distant galaxies,” he added.

“Long ago, galaxies were much closer together, and we think that colliding galaxies triggered periods of rapid star birth and quasar activity. We expect to see thousands of colliding galaxies in the ancient universe, and this will help us to explain how galaxies grew and evolved.”

Professor Michael Rowan-Robinson | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>