Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UK Astronomers look forward to looking back


When NASA launches its Space Infrared Telescope Facility (SIRTF) - the agency’s fourth ‘Great Observatory’ - later this week, astronomers around the world will be looking forward to using one of the most powerful time machines ever built.

Among those anticipating the opportunity to look back billions of years to an era when the universe was in its youth are Professor Michael Rowan-Robinson (Imperial College London) and Dr. Sebastian Oliver (University of Sussex), who will be participating in the international SIRTF Wide-area InfraRed Extragalactic (SWIRE) survey.

Taking advantage of SIRTF’s ability to detect infrared radiation (heat) from the coolest objects in the universe, the SWIRE team will study galaxies located up to 10 billion light years away where infant stars are beginning to emerge from the dust clouds in which they were born.

Over a period of nine months, the SWIRE survey will observe seven areas of the sky covering a total of 65 square degrees - equivalent to the area taken up by 360 full moons. These areas have been carefully selected because they are exceptionally transparent due to an absence of Galactic dust.

Using all 7 SIRTF wavebands (3.6, 4.5, 5.8, 8, 24, 70 and 160 microns), SWIRE is expected to detect more than 1 million infrared galaxies, many of them dusty, star-forming galaxies that existed when the universe was only about three billion years old.

“We shall be studying star-forming galaxies and quasars at high redshifts, looking far deeper in the infrared than any previous survey,” said Professor Rowan-Robinson, Deputy Principal Investigator for the SWIRE programme.

“By looking back through almost 90% of the universe’s history, we shall be able to look back to a period when star formation was much more frequent than it is today,” he added. “This will enable us to trace the evolution of star formation from very early times.”

“This is the most exciting and the most important project I have ever been involved with,” said Sebastian Oliver, a SWIRE Co-Investigator. “Our infrared survey will be combined with studies by ground-based telescopes (such as the UK Infrared Telescope in Hawaii) and by orbiting observatories, such as the Hubble Space Telescope, Chandra and XMM-Newton, that study the universe at other wavelengths.”

“The SWIRE survey will provide our first glimpse of many distant galaxies,” he added.

“Long ago, galaxies were much closer together, and we think that colliding galaxies triggered periods of rapid star birth and quasar activity. We expect to see thousands of colliding galaxies in the ancient universe, and this will help us to explain how galaxies grew and evolved.”

Professor Michael Rowan-Robinson | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>