Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SMART-1 – All Set to Fly to the Moon

18.08.2003


Europe is going to the Moon for the first time! In just over two weeks the European Space Agency’s (ESA) lunar probe, SMART-1, begins its journey to the Moon. Due to be launched from Kourou in French Guiana on 3rd September (12.04 a.m. 4th September BST) SMART-1 will be powered only by an ion engine which Europe will be testing for the first time as the main spacecraft propulsion. Onboard will be D-CIXS, an X-ray spectrometer built by scientists in the UK, which will provide information on what the Moon is made of.

SMART-1 represents a new breed of spacecraft. It is ESA’s first Small Mission for Advanced Research in Technology – designed to demonstrate innovative and key technologies for future deep space science missions. As well as the ion propulsion mechanism SMART-1 will test miniaturised spacecraft equipment and instruments, a navigation system which in the long term will allow spacecraft to autonomously navigate through the solar system, and a space communication technique whereby SMART-1 will establish a link with the Earth using a laser beam.

Once it has arrived at the Moon (expected to be in January 2005), SMART-1 will perform an unprecedented scientific study of the Moon– providing valuable information which will shed light on some of the unanswered questions. The spacecraft will search for signs of water-ice in craters near the Moon’s poles, provide data on the still uncertain origin of the Moon and reconstruct its evolution by mapping and the surface distribution of minerals and key chemical elements.



Commenting on the mission Prof. Ian Halliday, Chief Executive of PPARC said," This mission to our only natural satellite is a masterpiece of miniaturisation and UK scientists have played a leading role in providing one of the spacecraft’s key instruments - testament to the UK’’s expertise in space science.” Halliday added, "SMART-1 is packed with innovative technology that promises to revolutionise our future exploration of neighbouring planets whilst answering some fundamental questions about the Moon - how did the Moon form and how did it evolve?"

UK scientists have a lead role in the mission. D-CIXS, a compact X-ray Spectrometer, which will make the first ever global X-ray map of the Moon’s surface, has been built by a team led by Principal Investigator Professor Manuel Grande from the CCLRC Rutherford Appleton Laboratory near Oxford. Scientists from a number of other UK institutions are involved in D-CIXS (see notes to editors for further details).

Professor Grande explains how D-CIXS works,

“When the Sun shines on the Moon, its surface fluoresces and D-CIXS will measure the resulting X-rays to determine many of the elements found on its surface. This will provide us with vital clues which will help understand the origins of our Moon.”

Weighing just 4.5 kilograms and the size of a toaster, one of the challenges for the D-CIXS team has been to fit all the necessary components into the instrument. This has been achieved through clever miniaturisation and the development of new technology such as novel X-ray detectors – based on new swept charge devices (similar to the established charged couple devices found in much of today’s technology) and microfabricated collimators with walls no thicker than a human hair.

Lord Sainsbury, Minister for Science and Innovation at the Department of Trade and Industry said:
"SMART-1 is an unprecedented opportunity to provide the most comprehensive study ever of the surface of the Moon. The UK is playing a key role in this important European mission by providing technology that demonstrates excellent collaboration between engineering and science in this country. This mission will also give the European Space Agency the opportunity to develop new technology for future missions, demonstrating once again the effectiveness of joint working between the UK and our European partners in space."

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>