Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover cheap and environmentally friendly way to dispose of waste from nuclear power plants

14.08.2003


Scientists from the University of Strathclyde, collaborating with an international team from Imperial College, Rutherford Appleton Laboratory(RAL), ITU (Karlsruhe) and the University of Jena, have successfully turned the radioactive isotope Iodine-129, a major waste product in the nuclear power industry, into the more friendly isotope Iodine-128 using laboratory lasers. This is the first time an isotope has been transmuted. They announced their discovery today in The Institute of Physics journal Journal of Physics D: Applied Physics.



Iodine-129 is one of the major waste products from nuclear power plants and has a half-life of 15.7 million years making it difficult and dangerous to dispose of. Currently, it is encased in glass and buried deep in the earth. Professor Ken Ledingham and colleagues irradiated Iodine-129 with a laser beam and succeeded in turning it into Iodine-128 which, with a half life of just 25 minutes, can be safely handled and disposed of within an hour.

The next step for Professor Ledingham is to develop this technique on an industrial scale and with other radioactive isotopes. He is currently working on a proposal to seek funding to develop a laser system large enough to cope with the volume of Iodine-129 produced by the nuclear power industry.


Professor Ledingham said today: “The discovery we published today shows for the first time that we can transmute isotopes using lasers. Now we need to scale up our methods so that we can deal with the sort of volumes likely to be produced by the nuclear power industry in the future. Using lasers is a relatively cheap and very efficient way of disposing of nuclear waste”.

This discovery will also provide an easy way of producing the isotopes needed to operate the PET scanners used in hospitals and in research. These isotopes are currently manufactured in huge machines called cyclotrons, only four of which exist in the UK. Professor Ledingham hopes to be able to apply his technique to the production of these isotopes quickly and believes that this will be a practical reality within the next five years.

David Reid | alfa
Further information:
http://www.iop.org/EJ/journal/JPhysD

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>