Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover cheap and environmentally friendly way to dispose of waste from nuclear power plants

14.08.2003


Scientists from the University of Strathclyde, collaborating with an international team from Imperial College, Rutherford Appleton Laboratory(RAL), ITU (Karlsruhe) and the University of Jena, have successfully turned the radioactive isotope Iodine-129, a major waste product in the nuclear power industry, into the more friendly isotope Iodine-128 using laboratory lasers. This is the first time an isotope has been transmuted. They announced their discovery today in The Institute of Physics journal Journal of Physics D: Applied Physics.



Iodine-129 is one of the major waste products from nuclear power plants and has a half-life of 15.7 million years making it difficult and dangerous to dispose of. Currently, it is encased in glass and buried deep in the earth. Professor Ken Ledingham and colleagues irradiated Iodine-129 with a laser beam and succeeded in turning it into Iodine-128 which, with a half life of just 25 minutes, can be safely handled and disposed of within an hour.

The next step for Professor Ledingham is to develop this technique on an industrial scale and with other radioactive isotopes. He is currently working on a proposal to seek funding to develop a laser system large enough to cope with the volume of Iodine-129 produced by the nuclear power industry.


Professor Ledingham said today: “The discovery we published today shows for the first time that we can transmute isotopes using lasers. Now we need to scale up our methods so that we can deal with the sort of volumes likely to be produced by the nuclear power industry in the future. Using lasers is a relatively cheap and very efficient way of disposing of nuclear waste”.

This discovery will also provide an easy way of producing the isotopes needed to operate the PET scanners used in hospitals and in research. These isotopes are currently manufactured in huge machines called cyclotrons, only four of which exist in the UK. Professor Ledingham hopes to be able to apply his technique to the production of these isotopes quickly and believes that this will be a practical reality within the next five years.

David Reid | alfa
Further information:
http://www.iop.org/EJ/journal/JPhysD

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>