Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover cheap and environmentally friendly way to dispose of waste from nuclear power plants

14.08.2003


Scientists from the University of Strathclyde, collaborating with an international team from Imperial College, Rutherford Appleton Laboratory(RAL), ITU (Karlsruhe) and the University of Jena, have successfully turned the radioactive isotope Iodine-129, a major waste product in the nuclear power industry, into the more friendly isotope Iodine-128 using laboratory lasers. This is the first time an isotope has been transmuted. They announced their discovery today in The Institute of Physics journal Journal of Physics D: Applied Physics.



Iodine-129 is one of the major waste products from nuclear power plants and has a half-life of 15.7 million years making it difficult and dangerous to dispose of. Currently, it is encased in glass and buried deep in the earth. Professor Ken Ledingham and colleagues irradiated Iodine-129 with a laser beam and succeeded in turning it into Iodine-128 which, with a half life of just 25 minutes, can be safely handled and disposed of within an hour.

The next step for Professor Ledingham is to develop this technique on an industrial scale and with other radioactive isotopes. He is currently working on a proposal to seek funding to develop a laser system large enough to cope with the volume of Iodine-129 produced by the nuclear power industry.


Professor Ledingham said today: “The discovery we published today shows for the first time that we can transmute isotopes using lasers. Now we need to scale up our methods so that we can deal with the sort of volumes likely to be produced by the nuclear power industry in the future. Using lasers is a relatively cheap and very efficient way of disposing of nuclear waste”.

This discovery will also provide an easy way of producing the isotopes needed to operate the PET scanners used in hospitals and in research. These isotopes are currently manufactured in huge machines called cyclotrons, only four of which exist in the UK. Professor Ledingham hopes to be able to apply his technique to the production of these isotopes quickly and believes that this will be a practical reality within the next five years.

David Reid | alfa
Further information:
http://www.iop.org/EJ/journal/JPhysD

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>