Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover cheap and environmentally friendly way to dispose of waste from nuclear power plants

14.08.2003


Scientists from the University of Strathclyde, collaborating with an international team from Imperial College, Rutherford Appleton Laboratory(RAL), ITU (Karlsruhe) and the University of Jena, have successfully turned the radioactive isotope Iodine-129, a major waste product in the nuclear power industry, into the more friendly isotope Iodine-128 using laboratory lasers. This is the first time an isotope has been transmuted. They announced their discovery today in The Institute of Physics journal Journal of Physics D: Applied Physics.



Iodine-129 is one of the major waste products from nuclear power plants and has a half-life of 15.7 million years making it difficult and dangerous to dispose of. Currently, it is encased in glass and buried deep in the earth. Professor Ken Ledingham and colleagues irradiated Iodine-129 with a laser beam and succeeded in turning it into Iodine-128 which, with a half life of just 25 minutes, can be safely handled and disposed of within an hour.

The next step for Professor Ledingham is to develop this technique on an industrial scale and with other radioactive isotopes. He is currently working on a proposal to seek funding to develop a laser system large enough to cope with the volume of Iodine-129 produced by the nuclear power industry.


Professor Ledingham said today: “The discovery we published today shows for the first time that we can transmute isotopes using lasers. Now we need to scale up our methods so that we can deal with the sort of volumes likely to be produced by the nuclear power industry in the future. Using lasers is a relatively cheap and very efficient way of disposing of nuclear waste”.

This discovery will also provide an easy way of producing the isotopes needed to operate the PET scanners used in hospitals and in research. These isotopes are currently manufactured in huge machines called cyclotrons, only four of which exist in the UK. Professor Ledingham hopes to be able to apply his technique to the production of these isotopes quickly and believes that this will be a practical reality within the next five years.

David Reid | alfa
Further information:
http://www.iop.org/EJ/journal/JPhysD

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>