Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single Photon Detector Conquers the Dark Side

13.08.2003


Researchers from the National Institute of Standards and Technology (NIST) and Boston University have demonstrated a detector that counts single pulses of light, while simultaneously reducing false or “dark counts” to virtually zero.



Reported in the July 28, 2003, issue of Applied Physics Letters*, the advance provides a key technology needed for future development of secure quantum communications and cryptography.

Quantum communications and cryptography is a codemaker’s Holy Grail. The idea is to use a rapid series of light pulses (photons) in one of two different states to transmit information in an unbreakable code.


The photon detector project is part of a multi-disciplinary NIST effort to develop the sophisticated measurement methods needed to make quantum communication and cryptography possible. Funding was provided by the Defense Advanced Research Projects Agency (DARPA) and the NIST Advanced Technology Program (ATP).

Most current photon detectors operate best with visible light, cannot reliably detect single photons and suffer from high dark counts due to random electronic noise. The new device operates with the wavelength of near-infrared light used for fiber optic communications and produces negligible dark counts. Instead of using light-sensitive materials, the NIST device uses a tungsten film coupled to a fiber optic communication line. The film is chilled to 120 milliKelvin, at its transition temperature between normal conductivity and superconductivity. When the fiber optic line delivers a photon to the tungsten film, the temperature rises and the apparatus detects it as an increase in electrical resistance.

The device detects about 20,000 photons per second and works with an efficiency of about 20 percent. With planned improvements, the research team hopes to increase efficiencies to greater than 80 percent.

Media Contact:
Fred McGehan (Boulder), (303) 497-3246

* Miller, A.J., Nam, S.W., Martinis, J.M. and Sergienko, A.V. Demonstration of a low-noise near-infrared photon counter with multi-photon discrimination, Applied Physics Letters (July 28, 2003), Vol. 83, No. 4, pp. 791-793.

Fred McGehan | NIST
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2003_0811.htm#photon

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>