Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue physicists hone rules for nanotech game

12.08.2003


Nanotechnologists could have a firmer handle on the forces at play in their microscopic world thanks to recent physics research at Purdue University.



The latest in a series of experiments aimed at revealing fundamental knowledge of the universe has yielded precise measurement of the so-called Casimir force – a force that could make tiny machines behave erratically, causing a thorn in the side of nanotechnology manufacturers. A team, including Purdue physicist Ephraim Fischbach, has answered science’s questions about the Casimir force’s effects, which could help manufacturers work around the problem.

"The Casimir force is not a new discovery, but its effects on machines are essentially negligible until you start building at the nanoscale," said Fischbach, a professor in Purdue’s School of Science. "Now that nanotechnology is pervading industry, it will be important for us to understand how this force can hinder – or help – in our efforts to build the world’s tiniest machines."


Fischbach collaborated on this work with Ricardo Decca (Indiana University-Purdue University Indianapolis), Daniel Lopez (Lucent Technologies), Dennis Krause (Wabash College), and Vladimir Mostepanenko and Galina Klimchitskaya (both of the Universidade Federal de Paraiba, Brazil). Their paper appears in the current (7/31) issue of Physical Review Letters.

The Casimir force has to do with the minute pressure that real and virtual photons of light exert when they bump against an object. High quantities of photons are constantly striking you from all directions, emitted by everything from your stovetop to distant stars.

"If an object creates heat or light, it shines with photons – even your own body," Fischbach said. "Usually when a piece of metal is struck with a photon from one direction, another is hitting it on its opposite side, and the effects cancel out, and it doesn’t move."

But when two very small objects are extremely close together, the "photonic pressure" on the outside of each object is stronger than on the inside, which tends to drive the two toward each other.

"This effect is comparatively weak on large objects, but at the nanoscale it can really push things around," Fischbach said. "When the teeth of two tiny gears come together, for example, the Casimir force could push them together so strongly that they would stick and freeze up the nanomachinery. We needed to measure the force’s effects accurately so we could factor it into future investigations."

Fischbach has spent much of his career pursuing some of modern physics’ most vexing mysteries – whether the universe possesses extra dimensions, for example, or whether matter is ultimately composed of vanishingly small objects called superstrings. Answers to such questions often require a series of complex experiments even to approach them. His research into the Casimir force has proven a particularly successful step along that way, thanks to the contribution of his colleagues.

"Decca and Lopez designed a particularly good experiment," Fischbach said. "They enabled us to measure the effects of the Casimir force at the 200-nanometer scale with unprecedented accuracy."

With the assistance of Klimchitskaya and Mostepanenko, considered leading experts in analyzing Casimir force experiments, the group managed to match theory about the Casimir force with hard measurements of its effects on the nanoscale with less than a 1 percent margin of error.

"There had been at least three different theories trying to explain the workings of the Casimir force being debated in physics journals," Krause said. "This work should lay the debate to rest once and for all and allow us to get on with honing our knowledge of the force’s effects."

Fischbach said further research is still needed to change the force from a hurdle into a workhorse for those working at the nanoscale.

"Some computer industry experts think that future generations of computers will use light, rather than electricity, to carry data," he said. "To manipulate light beams at that scale, we will likely need tiny mirrors that can pivot to reflect photons down different channels. Knowledge of the Casimir force – which essentially deals with photons’ ability to move small objects – could help us make those mirrors move with precision."

Another, more contemporary, application could be the fiber-optic industry, which also moves information-carrying photons around.

"Fiber-optic cables carry thousands of data streams, each of which is like a train moving down a track," Krause said. "Eventually, each train has to be routed at a switching station. The Casimir force could help us to construct switches that don’t heat up like conventional electronics do, meaning we’ll have fewer opportunities for errors in the switch house."

Fischbach said he was particularly excited about the results because the experiment could lead to evidence for new dimensions in the universe – the ultimate goal of his investigations. But for now, he said, the team is pleased to have made a contribution to science that will impact both fundamental and applied physics.

"It’s not often that you get to unify theory and practice this closely," Fischbach said. "For the nanotechnologists, this discovery means a new tool in their belt. But for a theorist like me, it’s also exciting because it could help me with my next experiment, which aims to find out whether the universe has more dimensions than we think. So this is just the prelude – stay tuned."

This work was funded in part by the U.S. Department of Energy.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Ephraim Fischbach, (765) 494-5506, ephraim@physics.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030811.Fischbach.casimir.html
http://news.uns.purdue.edu/UNS/html3month/021029.Fischbach.Casimir.html

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>