Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dim future for universe as stellar lights go out

07.08.2003


The universe is gently fading into darkness according to three astronomers who have looked at 40,000 galaxies in the neighbourhood of the Milky Way. Research student Ben Panter and Professor Alan Heavens from Edinburgh University´s Institute for Astronomy, and Professor Raul Jimenez of University of Pennsylvania, USA, decoded the "fossil record" concealed in the starlight from the galaxies to build up a detailed account of how many young, recently-formed stars there were at different periods in the 14-billion-year existence of the universe. Their history shows that, for billions of years, there have not been enough new stars turning on to replace all the old stars that die and switch off. The results will be published in the Monthly Notices of the Royal Astronomical Society on 21 August 2003.



"Our analysis confirms that the age of star formation is drawing to a close", says Alan Heavens. "The number of new stars being formed in the huge sample of galaxies we studied has been in decline for around 6 billion years - roughly since the time our own Sun came into being."

Astronomers already had evidence that this was the case, mainly from observing galaxies so far away that we see them as they were billions of years ago because of the great length of time their light has taken to reach us. Now the same story emerges strongly from the work of Panter, Heavens and Jimenez, who for the first time approached the problem differently and used the whole spectrum of light from an enormous number of nearby galaxies to get a more complete picture.


Galaxies shine with the combined light of all the stars in them. Most of the light from young stars is blue, coming from very hot massive stars. These blue stars live fast and die young, ending their lives in supernova explosions. When they have gone, they no longer outshine the smaller red stars that are more long-lived. Many galaxies look reddish overall rather than blue - a broad sign that most star formation happened long ago.

In their analysis, Panter, Heavens and Jimenez have used far more than the simple overall colours of the galaxies, though. The spectrum observations they used come from the Sloan Digital Sky Survey and the volume of data involved was so vast, that the researchers had to develop a special lossless data compression method, called MOPED, to allow them to analyse the sample in a reasonable length of time, without losing accuracy.

Contact:

Prof Raul Jimenez
Assistant Professor of Physics & Astronomy
Dept of Physics & Astronomy, University of Pennsylvania
Phone: +1-215 - 573-5630
Fax : +1-215 - 898-2010
e-mail: raulj@physics.upenn.edu

Prof. Alan Heavens | alfa
Further information:
http://www.sdss.org

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>