Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pigeonholing quantum phase transitions

06.08.2003


Classification of quantum phenomena critical to high-temp superconductivity



A team of physicists led by researchers at Rice University has developed the first thermodynamic method for systematically classifying quantum phase transitions, mysterious electromagnetic transformations that are widely believed to play a critical role in high-temperature superconductivity.

The new research is described in two papers - one theoretical and one experimental - in the Aug. 8 issue of Physical Review Letters. The theoretical paper predicts that a mathematical irregularity called a divergence occurs at every "quantum critical point," a stage materials pass through as they change phases. The experimental paper reports the observation of such a divergence in the quantum critical points of two metals with very different quantum signatures.


"One of the biggest questions in condensed matter physics today is whether high-temperature superconductivity arises out of quantum critical points," said lead researcher Qimiao Si, associate professor of physics and astronomy at Rice. "Classification of quantum critical points is an important step toward answering this question."

Matter commonly transforms itself via phase changes. Melting ice and boiling water are examples of phase transitions that arise from changes in temperature, which can easily be described using classical physics. Within the past decade, physicists have detected quantum phase transitions, changes that arise entirely from quantum fluctuations -- the jittering of subatomic particles as described by Heisenberg’s uncertainty principle.

Every phase transition, whether classical or quantum, is marked by a change in the way matter is ordered. For example, when ice melts, water molecules change from an ordered crystal lattice to a disordered fluid. In quantum phase transitions, which occur in rare earth metals called heavy fermions, electrons change from magnetic to paramagnetic. As the metals change quantum phases, they pass through a stage known as the "critical point" in which all electrons throughout the material respond collectively and can no longer be regarded as individual particles.

The new theoretical work by Si and Rice graduate student Lijun Zhu, in collaboration with Achim Rosch’s group at the University of Karlsruhe, Germany, sprang from the fact that thermodynamic quantities -- like specific heat -- often diverge at classical critical points. The team predicted that the Grüneisen ratio -- the relative value of thermal expansion to specific heat -- would diverge in a very predictable manner in any material as it approached a quantum critical point.

To test the theory, Si and Zhu collaborated with Frank Steglich’s experimental group from the Max-Planck Institute for Chemical Physics of Solids in Dresden, Germany. Steglich, together with his colleagues John Mydosh, Philipp Gegenwart and Robert Küchler, chose two heavy fermion compounds that are based on cerium and ytterbium. The quantum critical points for each occur at absolute zero, the coldest temperature possible.

Since it is impossible to achieve absolute zero in a laboratory, the team cooled the metals to within a few hundredths of a degree above absolute zero. They found that the Grüneisen ratio diverged as predicted in both metals as they approached absolute zero.

From the divergences, the researchers concluded that the two metals belong to two different classes of quantum phase transition. One of these is the locally-critical quantum phase transition, a new class of quantum phase transition first proposed by Si and colleagues in an article in Nature two years ago.

"If our classification system is born out through experiments on additional materials, the discipline will, for the first time, have a general thermodynamic means to systematically understand quantum critical points," Si said. "Such understandings could prove very valuable for physicists studying high-temperature superconductors."

Materials scientists are interested in superconductors because they conduct electricity with no resistance. In standard conductors, like copper or aluminum, a significant percentage of power is lost due to resistance, the tendency of the wires to convert some electricity into heat. Most superconductors must be cooled to near absolute zero before they superconduct. High temperature superconductors operate at temperatures as high as minus 164 degrees Fahrenheit, far above the boiling point of liquid nitrogen, an important milestone for those interested in designing practical systems that are both technologically and economically feasible.

Heavy fermion metals are prototype systems for quantum criticality. When these metals reach their quantum critical point, the electrons within them act in unison and the effects of even one electron moving through the system cause widespread effects throughout. This is very different from the electron interactions in a common wiring material like copper. It is these collective effects that have increasingly convinced physicists of a possible link between superconductivity and quantum criticality.

Contact: Jade Boyd, jadeboyd@rice.edu

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu

More articles from Physics and Astronomy:

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

nachricht Swiss space research reaches for the sky
29.09.2016 | Schweizerischer Nationalfonds SNF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>