Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot spots on Mars give hunt for life new target

06.08.2003


Ice Tower on Mt Erebus, Antarctica


Giant hollow towers of ice formed by steaming volcanic vents on Ross Island, Antarctica are providing clues about where to hunt for life on Mars.

University of Melbourne geologist, Dr Nick Hoffman has found evidence from recent infra-red images of Mars that similar structures may exist on Mars and, if life is to be found, such towers may be best place to start looking.

Hoffman has drawn attention to strange temperature anomalies in these latest Mars images taken with an infra-red heat-sensing camera on the Mars Odyssey orbiter. These anomalies, he says, fit the signature you might expect from structures formed in similar ways to the Antarctica ice towers.



"If these thermal anomalies don’t prove to be another of Mars’ "red herrings", the search for water and life on Mars now has a clear focus. While I believe Mars is actually lifeless, ice towers rather than the current acclaimed river channels are the most likely place to find signs of water activity, and hence life, on an otherwise frozen planet," says Hoffman.

Hoffman and colleague, Professor Phil Kyle, Bureau of Geology and Mineral Resources, New Mexico, presented their research into the similarities between Antarctica and Mars at NASA´s recent 6th International Mars Conference in Pasadena, California.

Mt Erebus is a 3800 metre active volcano on Antarctica’s Ross Island. Here, steaming volcanic vents transform steam directly into ice, missing the normal in-between step of liquid water. Instead, all of the water is transported as vapour directly from snow and ice in the ground (permafrost) to build tall hollow chimneys of ice, that loom over the landscape up to 10m tall.

It is possible to climb down the inside the chimneys where the filtered sunlight creates an eerie blue dimness. In this cave-like grotto, away from the howling wind, there exists a local microclimate gently warmed by the volcanic heat beneath.

The internal temperatures of the towers hover around freezing, but are often tens of degrees warmer than the outside air. Delicate curtains of snowflakes and icicles hang from the roof. The floor is dry crunchy gravel, dried out by volcanic warmth, but occasionally a warm spell leads to drips melting from the roof.

"Earth Bacteria can thrive in this sheltered spot, despite the traces of volcanic gas," says Hoffman. "On Mars, similar structures would be doubly valuable for potential Mars microbes. The icy structure of the chimney would filter out harmful Ultra-Violet radiation, and provide warmth and shelter. Meanwhile, the volcanic gases could provide chemical energy for primitive forms of life like those that live in hot springs on earth," he says.

The strange temperature anomalies picked up by the orbiter are in an area of Hellas Basin, a massive impact basin about the size of Australia in the southern Hemisphere of Mars.

"Debate continues about the anomalies which might only be odd rock formations, but they are definitely 8 to 12 degrees warmer than the surrounding materials both day and night, so warmth from the sun cannot be responsible for their anomalous temperature," says Hoffman.

"Some special combination of sunshine, reflectivity, and cementation is required to explain these temperatures in any other way, and this combination, whilst possible, is unlikely," he says.

"We anticipate that such towers, if they exist on Mars, could grow up to 30 metres tall under the lower gravity. The geothermal hotspots over which a tower might exist are unlikely to produce liquid water, unless they are exceptionally active or newly formed where the extensive permafrost of Mars might melt for the first and only time. Instead the hotspot would drive the water vapour upwards forming a similar grotto-chimney type of ice tower as found on Mt Erebus.

Water on Mars

Until now, NASA scientists have thought deep gullies discovered in 2001 to be the most promising candidates for liquid water flows on modern Mars. Many NASA researchers have suggested ways in which they might be formed by liquid water.

"The problem is nobody has seen water flowing in the gullies," says Hoffman.
Rather than water, Hoffman’s recent research shows the gullies are more likely to be formed by avalanches of frozen carbon dioxide and other debris.

NASA is desperate to find signs of liquid water on Mars so they have a target for the next generation of Mars landers and rovers to go and search for life, but their search could prove fruitless if Hoffman’s research and analysis is correct. "The ice towers are the best bet for life, so far," he says.

Contact:

Dr Nick Hoffman
School of Earth Sciences, Uni of Melbourne
Email: nhoffman@unimelb.edu.au

Jason Major | The University of Melbourne
Further information:
http://www.earthsci.unimelb.edu.au/mars

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>