Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot spots on Mars give hunt for life new target

06.08.2003


Ice Tower on Mt Erebus, Antarctica


Giant hollow towers of ice formed by steaming volcanic vents on Ross Island, Antarctica are providing clues about where to hunt for life on Mars.

University of Melbourne geologist, Dr Nick Hoffman has found evidence from recent infra-red images of Mars that similar structures may exist on Mars and, if life is to be found, such towers may be best place to start looking.

Hoffman has drawn attention to strange temperature anomalies in these latest Mars images taken with an infra-red heat-sensing camera on the Mars Odyssey orbiter. These anomalies, he says, fit the signature you might expect from structures formed in similar ways to the Antarctica ice towers.



"If these thermal anomalies don’t prove to be another of Mars’ "red herrings", the search for water and life on Mars now has a clear focus. While I believe Mars is actually lifeless, ice towers rather than the current acclaimed river channels are the most likely place to find signs of water activity, and hence life, on an otherwise frozen planet," says Hoffman.

Hoffman and colleague, Professor Phil Kyle, Bureau of Geology and Mineral Resources, New Mexico, presented their research into the similarities between Antarctica and Mars at NASA´s recent 6th International Mars Conference in Pasadena, California.

Mt Erebus is a 3800 metre active volcano on Antarctica’s Ross Island. Here, steaming volcanic vents transform steam directly into ice, missing the normal in-between step of liquid water. Instead, all of the water is transported as vapour directly from snow and ice in the ground (permafrost) to build tall hollow chimneys of ice, that loom over the landscape up to 10m tall.

It is possible to climb down the inside the chimneys where the filtered sunlight creates an eerie blue dimness. In this cave-like grotto, away from the howling wind, there exists a local microclimate gently warmed by the volcanic heat beneath.

The internal temperatures of the towers hover around freezing, but are often tens of degrees warmer than the outside air. Delicate curtains of snowflakes and icicles hang from the roof. The floor is dry crunchy gravel, dried out by volcanic warmth, but occasionally a warm spell leads to drips melting from the roof.

"Earth Bacteria can thrive in this sheltered spot, despite the traces of volcanic gas," says Hoffman. "On Mars, similar structures would be doubly valuable for potential Mars microbes. The icy structure of the chimney would filter out harmful Ultra-Violet radiation, and provide warmth and shelter. Meanwhile, the volcanic gases could provide chemical energy for primitive forms of life like those that live in hot springs on earth," he says.

The strange temperature anomalies picked up by the orbiter are in an area of Hellas Basin, a massive impact basin about the size of Australia in the southern Hemisphere of Mars.

"Debate continues about the anomalies which might only be odd rock formations, but they are definitely 8 to 12 degrees warmer than the surrounding materials both day and night, so warmth from the sun cannot be responsible for their anomalous temperature," says Hoffman.

"Some special combination of sunshine, reflectivity, and cementation is required to explain these temperatures in any other way, and this combination, whilst possible, is unlikely," he says.

"We anticipate that such towers, if they exist on Mars, could grow up to 30 metres tall under the lower gravity. The geothermal hotspots over which a tower might exist are unlikely to produce liquid water, unless they are exceptionally active or newly formed where the extensive permafrost of Mars might melt for the first and only time. Instead the hotspot would drive the water vapour upwards forming a similar grotto-chimney type of ice tower as found on Mt Erebus.

Water on Mars

Until now, NASA scientists have thought deep gullies discovered in 2001 to be the most promising candidates for liquid water flows on modern Mars. Many NASA researchers have suggested ways in which they might be formed by liquid water.

"The problem is nobody has seen water flowing in the gullies," says Hoffman.
Rather than water, Hoffman’s recent research shows the gullies are more likely to be formed by avalanches of frozen carbon dioxide and other debris.

NASA is desperate to find signs of liquid water on Mars so they have a target for the next generation of Mars landers and rovers to go and search for life, but their search could prove fruitless if Hoffman’s research and analysis is correct. "The ice towers are the best bet for life, so far," he says.

Contact:

Dr Nick Hoffman
School of Earth Sciences, Uni of Melbourne
Email: nhoffman@unimelb.edu.au

Jason Major | The University of Melbourne
Further information:
http://www.earthsci.unimelb.edu.au/mars

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>