Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small galaxy springs "dark matter" surprises

25.07.2003


Astronomers from the University of Cambridge, UK, have found for the first time the true outer limits of a galaxy. They have also shown that the dark matter in this galaxy is not distributed in the way conventional theory predicts.



The team - Professor Gerry Gilmore, Dr Mark Wilkinson, Dr Jan Kleyna and Dr Wyn Evans - presents its results today at the 25th General Assembly of the International Astronomical Union in Sydney, Australia. The work could provide the key to understanding how larger galaxies were formed, including our own Milky Way galaxy.

The researchers studied rare "dwarf spheroidal" galaxies. These have few visible stars but contain massive amounts of "dark matter" - a mysterious kind of matter that does not emit its own light or radiation, and therefore cannot be directly observed by astronomers. However, dark matter can be detected by the gravitational pull it exerts on visible objects such as stars.


Astronomers think that dwarf spheroidal galaxies may be the building blocks from which larger, mainstream galaxies were formed.

Some of the dwarf spheroidals - those in our "Local Group" of galaxies - are close enough for astronomers to be able to trace the movements of their individual stars.

A galaxy is held together by the combined gravity of its stars and dark matter. By studying the motion of stars in some of the dwarf spheroidal galaxies, the researchers have created a picture of how the mass of each galaxy is distributed.

In one dwarf spheroidal, found in the constellation Ursa Minor, the team found a clump of slow-moving stars near the galaxy´s centre. They interpreted this clump as the remains of a group of stars known as a globular cluster.

This group of stars flies in the face of the most popular model for how dark matter is distributed in galaxies. The "lambda cold dark matter" model, which explains very well the large-scale structures in the Universe, predicts that dark matter rapidly increases in density towards the centre of a galaxy. If dark matter were distributed in this way in the Ursa Minor dwarf spheroidal galaxy, the star cluster would have been dispersed. The cluster´s existence shows that the dark matter is in fact distributed differently in this galaxy.

Furthermore, additional research into the Ursa Minor dwarf spheroidal has revealed the true edge of that galaxy - the point at which the dark matter stops. In most galaxies the way the stars move indicates that the dark matter extends far beyond the visible starry regions. In the Ursa Minor dwarf spheroidal, however, the stars in its very outermost parts are not moving quickly. This implies that there is little dark matter in the halo surrounding that galaxy.

Perhaps some of the dark matter has been nibbled off at the edges by the nearest massive galaxy (our own Milky Way), allowing some of the stars to slowly wander away. Or maybe the slow-moving stars could be ones that were "flung out" from the centre of the galaxy to its edges. Whatever the explanation, the finding represents the first detection of the true outer limits of a galaxy.

"Simulations of galaxy formation generally predict the existence of many more small galaxies around the Milky Way than are actually observed," said Gerry Gilmore, Professor of Experimental Philosophy at the Institute of Astronomy at the University of Cambridge. "However, this prediction is based on assumptions about the masses of the galaxies we observe."

"Our work is aimed at determining how much mass is actually present in the dwarf galaxies around the Milky Way. But until we have a rough idea of where the outer limits of these galaxies lie, we cannot claim to have measured their total mass."

Contact:

Professor Gerry Gilmore
University of Cambridge, United Kingdom
Email: gil@ast.cam.ac.uk

Professor Gerry Gilmore | EurekAlert!
Further information:
http://www.ast.cam.ac.uk

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>