Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small galaxy springs "dark matter" surprises

25.07.2003


Astronomers from the University of Cambridge, UK, have found for the first time the true outer limits of a galaxy. They have also shown that the dark matter in this galaxy is not distributed in the way conventional theory predicts.



The team - Professor Gerry Gilmore, Dr Mark Wilkinson, Dr Jan Kleyna and Dr Wyn Evans - presents its results today at the 25th General Assembly of the International Astronomical Union in Sydney, Australia. The work could provide the key to understanding how larger galaxies were formed, including our own Milky Way galaxy.

The researchers studied rare "dwarf spheroidal" galaxies. These have few visible stars but contain massive amounts of "dark matter" - a mysterious kind of matter that does not emit its own light or radiation, and therefore cannot be directly observed by astronomers. However, dark matter can be detected by the gravitational pull it exerts on visible objects such as stars.


Astronomers think that dwarf spheroidal galaxies may be the building blocks from which larger, mainstream galaxies were formed.

Some of the dwarf spheroidals - those in our "Local Group" of galaxies - are close enough for astronomers to be able to trace the movements of their individual stars.

A galaxy is held together by the combined gravity of its stars and dark matter. By studying the motion of stars in some of the dwarf spheroidal galaxies, the researchers have created a picture of how the mass of each galaxy is distributed.

In one dwarf spheroidal, found in the constellation Ursa Minor, the team found a clump of slow-moving stars near the galaxy´s centre. They interpreted this clump as the remains of a group of stars known as a globular cluster.

This group of stars flies in the face of the most popular model for how dark matter is distributed in galaxies. The "lambda cold dark matter" model, which explains very well the large-scale structures in the Universe, predicts that dark matter rapidly increases in density towards the centre of a galaxy. If dark matter were distributed in this way in the Ursa Minor dwarf spheroidal galaxy, the star cluster would have been dispersed. The cluster´s existence shows that the dark matter is in fact distributed differently in this galaxy.

Furthermore, additional research into the Ursa Minor dwarf spheroidal has revealed the true edge of that galaxy - the point at which the dark matter stops. In most galaxies the way the stars move indicates that the dark matter extends far beyond the visible starry regions. In the Ursa Minor dwarf spheroidal, however, the stars in its very outermost parts are not moving quickly. This implies that there is little dark matter in the halo surrounding that galaxy.

Perhaps some of the dark matter has been nibbled off at the edges by the nearest massive galaxy (our own Milky Way), allowing some of the stars to slowly wander away. Or maybe the slow-moving stars could be ones that were "flung out" from the centre of the galaxy to its edges. Whatever the explanation, the finding represents the first detection of the true outer limits of a galaxy.

"Simulations of galaxy formation generally predict the existence of many more small galaxies around the Milky Way than are actually observed," said Gerry Gilmore, Professor of Experimental Philosophy at the Institute of Astronomy at the University of Cambridge. "However, this prediction is based on assumptions about the masses of the galaxies we observe."

"Our work is aimed at determining how much mass is actually present in the dwarf galaxies around the Milky Way. But until we have a rough idea of where the outer limits of these galaxies lie, we cannot claim to have measured their total mass."

Contact:

Professor Gerry Gilmore
University of Cambridge, United Kingdom
Email: gil@ast.cam.ac.uk

Professor Gerry Gilmore | EurekAlert!
Further information:
http://www.ast.cam.ac.uk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>