Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian team maps "dark matter" halos around galaxies

24.07.2003


Two University of Toronto astronomers and a U.S. colleague have made the first-ever measurements of the size and shape of massive dark matter halos that surround galaxies

‘Our findings give us the clearest picture yet of a very mysterious part of our universe,’ says principal investigator Henk Hoekstra, a post-doctoral fellow at University of Toronto’s Canadian Institute for Theoretical Astrophysics. ‘Using relatively simple physics, we can get our first direct glimpse of the size and shape of these halos which are more than fifty times more massive than the light-producing part of galaxies that we can see.’

Hoekstra and his team present their findings on July 25 at the 25th General Assembly of the International Astronomical Union in Sydney, Australia.



Their research indicates that dark matter halos extend more than five times further than the visible stars in a galaxy, says Hoekstra. In the case of our Milky Way galaxy, he says, the halo extends to more than 500,000 light-years away and weighs approximately 880 billion times more than the sun. The findings also provide strong support for the popular ‘cold dark matter’ model of the universe.

Dark matter emits no light and, therefore, cannot be seen directly, Hoekstra explains. The only evidence for its existence comes from its gravitational pull on stars, gas and light rays. Dark matter is believed to account for approximately 25 per cent of the total mass in the universe, with the rest of the universe composed of normal matter (five per cent) and dark energy (70 per cent).

To date, most information about dark matter has come from measurements of the motion of gas and stars in the inner regions of galaxies. Other important data have come from computer simulations of the formation of the universe’s structure. However, scientists can explain their findings about dark matter only if it is true that galaxies are surrounded by massive, three-dimensional halos.

The majority of astronomers believe in the so-called cold dark matter theory of the universe, which suggests these halos are slightly flattened. Hoekstra’s findings corroborate this. Using the relatively new technique of weak gravitational lensing which allows astronomers to study the size and shape of dark matter, the team measured the shapes of more than 1.5 million distant galaxies using the Canada-France-Hawaii Telescope in Hawaii. ‘The small changes in the shapes of the galaxies offered a strong indication to us that the halos are flattened, like a rubber ball compressed to half its size,’ Hoekstra says.

Their findings can also be applied to a larger scientific debate about the nature of the universe. Some scientists have developed theories about the universe using the assumption that dark matter does not exist and, as a result, they have proposed changes to the law of gravity. However, Hoekstra is confident that his team’s findings will refute these theories.

The research was conducted with Professor Howard Yee of University of Toronto’s Department of Astronomy and Astrophysics and Michael Gladders, a former University of Toronto graduate student now at the Observatories of the Carnegie Institution of Washington in Pasadena, Calif. It was funded by the Natural Sciences and Engineering Research Council of Canada and the University of Toronto.

Contacts:

Henk Hoekstra
Canadian Institute for Theoretical Astrophysics
phone: +1-416-978-8494
email: hoekstra@cita.utoronto.ca

Dr Hoekstra can be contacted through the Media Room
at the IAU General Assembly in Sydney, Australia,
in July 13-26, 2003:
Tel: +61-2-9282 5418, 5419, 5420
Fax: +61-2-9282 5421
Email: iaumedia@netscape.net


Howard K.C. Yee
Department of Astronomy and Astrophysics
University of Toronto
phone: +1-416-978-1771
email: hyee@astro.utoronto.ca

Michael D. Gladders
Observatories of the Carnegie Institution of Washington
phone: +1-626-304-0252
email: gladders@ociw.edu

Nicolle Wahl
University of Toronto Public Affairs
phone: +1-416-978-6974
email: nicolle.wahl@utoronto.ca

Helen Sim | alfa
Further information:
http://www.aao.gov.au

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>