Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the dark secrets of dwarf galaxies

23.07.2003


New research on dwarf spheroidal galaxies by a team of astronomers at the University of Cambridge promises a real astronomical first: detection, for the first time, of the true outer limits of a galaxy.



The team is presenting today (23 July 2003) at the 25th General Assembly of the International Astronomical Union (IAUXXV) in Sydney, Australia. The research could provide the key to understanding how larger galaxies were formed, including our own Milky Way galaxy.

The rare dwarf spheroidal galaxies display few stars but contain massive amounts of "dark matter" or matter that does not emit radiation that can be observed by astronomers. The team studied these galaxies in detail using some of the largest optical telescopes on earth in order to probe their dark secrets. Dwarf spheroidal galaxies are widely believed to be the building blocks from which galaxies were formed.


By studying the motion of many stars the scientists have created a picture of how the mass of the galaxy is arranged. Surprisingly, when the Cambridge team looked at the stars at the edge of one such galaxy, Draco, they found that the outer stars were moving so quickly that the galaxy could only stay together if it contained 100 times more dark matter than the mass of the stars alone.

Using detailed models of the motions of stars in a galaxy containing large quantities of dark matter, the group was able to demonstrate their observations could only be understood if the galaxy was surrounded by a large halo of dark matter.

Observations of the Ursa Minor dwarf spheroidal galaxy presented a new complication in the study. The team found an unexpected clump of slow-moving stars interpreted as the dead remains of one of the pure star systems, a globular cluster. The cluster should have been scattered across the galaxy, but it was still held together. The team realised this was only possible if the dark matter were arranged in a manner very differently from standard galaxies.

In May 2003, further research into Ursa Minor showed the stars in the very outermost parts are not moving quickly like the stars at the edge of Draco. Several theories are being investigated including dark matter from edge of Ursa Minor has been snatched away from the galaxy by its massive parent, the Milky Way, allowing some stars to wander gently away from their parent. Or they could be stars which wandered too close to other stars in the centre of the galaxy and were slung out to the edge of the galaxy as a result.

Whatever the explanation, the findings promise a real astronomical first: detection, for the first time, of the true outer limits of a galaxy.

Gerry Gilmore, Professor of Experimental Philosophy at the Institute of Astronomy at the University of Cambridge, said:

"This research, utilising some of the largest optical telescopes on earth, has provided us with insight to the makeup of these rare dwarf galaxies. This research helps astronomers better understand how galaxies were formed, and help take into account dark matter in all galaxies."

Laura Morgan | alfa
Further information:
http://www.cam.ac.uk

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>