Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the dark secrets of dwarf galaxies

23.07.2003


New research on dwarf spheroidal galaxies by a team of astronomers at the University of Cambridge promises a real astronomical first: detection, for the first time, of the true outer limits of a galaxy.



The team is presenting today (23 July 2003) at the 25th General Assembly of the International Astronomical Union (IAUXXV) in Sydney, Australia. The research could provide the key to understanding how larger galaxies were formed, including our own Milky Way galaxy.

The rare dwarf spheroidal galaxies display few stars but contain massive amounts of "dark matter" or matter that does not emit radiation that can be observed by astronomers. The team studied these galaxies in detail using some of the largest optical telescopes on earth in order to probe their dark secrets. Dwarf spheroidal galaxies are widely believed to be the building blocks from which galaxies were formed.


By studying the motion of many stars the scientists have created a picture of how the mass of the galaxy is arranged. Surprisingly, when the Cambridge team looked at the stars at the edge of one such galaxy, Draco, they found that the outer stars were moving so quickly that the galaxy could only stay together if it contained 100 times more dark matter than the mass of the stars alone.

Using detailed models of the motions of stars in a galaxy containing large quantities of dark matter, the group was able to demonstrate their observations could only be understood if the galaxy was surrounded by a large halo of dark matter.

Observations of the Ursa Minor dwarf spheroidal galaxy presented a new complication in the study. The team found an unexpected clump of slow-moving stars interpreted as the dead remains of one of the pure star systems, a globular cluster. The cluster should have been scattered across the galaxy, but it was still held together. The team realised this was only possible if the dark matter were arranged in a manner very differently from standard galaxies.

In May 2003, further research into Ursa Minor showed the stars in the very outermost parts are not moving quickly like the stars at the edge of Draco. Several theories are being investigated including dark matter from edge of Ursa Minor has been snatched away from the galaxy by its massive parent, the Milky Way, allowing some stars to wander gently away from their parent. Or they could be stars which wandered too close to other stars in the centre of the galaxy and were slung out to the edge of the galaxy as a result.

Whatever the explanation, the findings promise a real astronomical first: detection, for the first time, of the true outer limits of a galaxy.

Gerry Gilmore, Professor of Experimental Philosophy at the Institute of Astronomy at the University of Cambridge, said:

"This research, utilising some of the largest optical telescopes on earth, has provided us with insight to the makeup of these rare dwarf galaxies. This research helps astronomers better understand how galaxies were formed, and help take into account dark matter in all galaxies."

Laura Morgan | alfa
Further information:
http://www.cam.ac.uk

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>