Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FUSE "brain transplant" secures future of orbiting observatory

22.07.2003


Scientists and engineers who work with the Far Ultraviolet Spectroscopic Explorer have pulled off a second daring and unprecedented rescue of the satellite observatory from serious guidance problems. This time, though, they didn´t actually wait for the guidance problems to happen.



In response to hints of the potential for future new difficulties with FUSE´s gyroscopes, which are used to check the satellite´s pointing accuracy, researchers redesigned software for three computers aboard FUSE and recently uploaded the new software to the computers.

The staff of FUSE, operated for NASA by Johns Hopkins University, compared the feat to a "brain transplant." They currently maintain detailed control of FUSE´s precise orientation through the gyros´ ability to sense even very small shifts in the satellite´s position. If too many of the gyros stop working, however, the new software will allow controllers to switch over to using the fine error sensor, a camera aboard FUSE, in their place. In the new guidance mode, detailed information on where FUSE is pointing will be determined via the positions of key stars imaged in the fine error sensor.


Jeff Kruk, principal research scientist in physics and astronomy in the Kreiger School of Arts and Sciences at Johns Hopkins and deputy chief of observatory operations for FUSE, said the new "zero gyro" mode has already been tested and proved to be even more effective at keeping the satellite precisely pointed.

"We´ve had several periods of a week or so where we´ve taken the gyros out of the loop and flown on the new software, and the pointing stability is actually a little better with the fine error sensor than it is with the gyros," Kruk said.

But Kruk and Warren Moos, professor of astronomy at Johns Hopkins and principal investigator for FUSE, cautioned that there´s still work to be done in fine-tuning and error-proofing the new system.

"Things are going extremely well so far," Moos said. "We haven´t found any major problems, but we´re not out of the woods yet."

FUSE, launched in 1999, has gathered important data about the universe by analyzing light in the far ultraviolet portion of the electromagnetic spectrum. The "brain transplant" in April was the second improvised but extraordinary effort to rescue the orbiting probe from approximately 500 miles below on Earth. In December 2001, the failure of the second of four guidance system components known as reaction wheels sent FUSE into a pre-programmed "safe mode" configuration. In less than two months of intense work, engineers and scientists were able to bring the satellite back online using parts known as magnetic torquer bars in place of the reaction wheel.

This year´s pre-emptive rescue and the testing of the associated software have had little if any impact on FUSE´s scheduled scientific observations, said Bill Blair, chief of observatory operations for FUSE and a research professor of physics and astronomy at Johns Hopkins.

"Since the upload, which took about a week, we´ve been back to normal science operations," he explained. "But there´s also been a long, low-level tail of activity to just kind of optimize things and track down small problems with the new software."

The upgrades are a product of nearly two years of work by engineers and scientists at Johns Hopkins, Orbital Sciences Corp., Honeywell Technical Solutions Inc., NASA Goddard Space Flight Center and the Canadian Space Agency. Researchers began to work on a new method for guiding FUSE when one of FUSE´s six gyros, always anticipated to have a finite lifespan, went dead unexpectedly early on May 31, 2001. Two gyros were built into FUSE for each of the three axes of motion. If any axis were to lose both gyros, controllers would no longer be able to point FUSE precisely.

"We were highly motivated when the first gyro went dead on May 31," Moos recalled with a wry laugh. "There have been very, very few attempts to fly precision-pointed spacecraft without gyros, and learning how was a major step forward."

Among the obstacles faced by controllers was developing ways to make sure information could be sent back and forth quickly enough between FUSE´s three main computers. Moos compared the process to trying to stop a fall from a tree–not only is there very little time to sense when an appropriate branch might be within reach, but the time send a mental command to reach out and grab that branch is also very short.

Controllers also had to develop a way to deal with the periods when the guide stars used by the fine error sensor to fix FUSE´s position were eclipsed by the Earth as FUSE orbited around it. Moos said their solution depends in part on detailed models of how torque from the Earth´s gravitational field will twist the satellite, and in part on readings they could obtain from an instrument aboard FUSE known as a magnetometer.

Kruk added that the new software uploaded to FUSE in April contained improvements to several housekeeping functions in the satellite, in part to prepare it for reduced round-the-clock human monitoring as FUSE enters an extension of its originally planned mission.

"We were able to build in more smarts to make FUSE capable of gracefully handling almost anything that might come up," Kruk explained.

Blair concluded, "With these repairs in place, and astronomers from around the world lining up to use FUSE, the mission is on track for at least several more years of operations."

Michael Purdy | EurekAlert!
Further information:
http://www.jhu.edu/news_info/news/home02/mar02/fuse.html

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>