Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA to build a deep space ground station in Cebreros (Spain)

18.07.2003


Communicating with ESA’s spacecraft such as Mars Express, or SMART-1, Rosetta and Venus Express - yet to be launched - will be even easier and more effective when the new Cebreros ground station, near Avila (Spain), becomes operational in September 2005.



On 22 July, in Madrid, the Director General of ESA, Jean-Jacques Dordain, the Spanish Secretary of State for Defence, Mr Fernando Díez Moreno, and the Spanish Secretary of State for Science and Technology, Mr Pedro Morenés Eulate, will sign an agreement between ESA and the Kingdom of Spain that will pave the way for the installation of a new high-performance deep-space tracking station in Cebreros.

Communicating with spacecraft over very long distances, probes that have to be controlled remotely, together with their on board instruments, at distances up to 900 million kilometres from Earth (more than six times the distance from Earth to the sun) require huge and powerful antennas.


Through its control Centre (ESOC) in Darmstadt (Germany), responsible for all spacecraft operations, ESA already has long experience of dealing with a large network of ground stations and antennas, including a 35 m deep-space antenna in New Norcia, north of Perth in Australia.

Back in the 1970s, ESA signed an agreement with Spain to use a satellite tracking station located at Villafranca del Castillo (Villanueva de la Cañada, Madrid). ESA/Villafranca has now become one of the most highly specialised spacecraft tracking stations in the world.

To support the new project and allow ESA to take a further step towards a real European Deep Space Network, the Government of Spain will grant the European Space Agency a 75-year lease on two plots of land that belong to the Ministry of Defence. One plot will accommodate the space tracking facilities and the 35m diameter deep-space antenna. The other will serve for the calibration tower, used to simulate the signals transmitted by spacecraft for testing. Construction work is scheduled to start in September this year.

“The new capabilities of the future antenna at Cebreros will significantly support the role of ESA in Spain. Moreover, in terms of radio-electric conditions, the Cebreros environment is perfect, and will give this new site an important growth potential,” according to ESA’s Director of Technical and Operational Support, Gaele Winters.

The network of antennas in Spain (Cebreros (Avila), Villafranca del Castillo (Villanueva de la Cañada, Madrid) and Robledo (Robledo de Chavela, Madrid, owned by NASA/JPL), will soon be one of the most important groups of satellite tracking stations worldwide, due to the optimum environment free of radio-electric disturbances, and will make a valuable additional contribution to the scientific and technological framework of European space activities.

Franco Bonacina | alfa

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>