Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble tracks down a galaxy cluster’s dark matter

17.07.2003


Using the powerful trick of gravitational lensing, a European and American team of astronomers have constructed an extensive ‘mass map’ of one of the most massive structures in our Universe. They believe that it will lead to a better understanding of how such systems assembled and the key role of dark matter.

Clusters of galaxies are the largest stable systems in the Universe. They are like laboratories for studying the relationship between the distributions of dark and visible matter. In 1937, Fritz Zwicky realised that the visible component of a cluster (the thousands of millions of stars in each of the thousands of galaxies) represents only a tiny fraction of the total mass. About 80-85% of the matter is invisible, the so-called ’’dark matter’’. Although astronomers have known about the presence of dark matter for many decades, finding a technique to view its distribution is a much more recent development.

Led by Drs Jean-Paul Kneib (from the Observatoire Midi-Pyrénées, France/Caltech, United States), Richard Ellis and Tommaso Treu (both Caltech, United States), the team used the NASA/ESA Hubble Space Telescope to reconstruct a unique ‘mass map’ of the galaxy cluster CL0024+1654. It enabled them to see for the first time on such large scales how mysterious dark matter is distributed with respect to galaxies. This comparison gives new clues on how such large clusters assemble and which role dark matter plays in cosmic evolution.



Tracing dark matter is not an easy task because it does not shine. To make a map, astronomers must focus on much fainter, more distant galaxies behind the cluster. The shapes of these distant systems are distorted by the gravity of the foreground cluster. This distortion provides a measure of the cluster mass, a phenomenon known as ‘weak gravitational lensing’.

To map the dark matter of CL0024+1654, more than 120 hours observing time was dedicated to the team. This is the largest amount of Hubble time ever devoted to studying a galaxy cluster. Despite its distance of 4.5 thousand million light-years (about one third of the look-back time to the Big Bang) from Earth, this massive cluster is wide enough to equal the angular size of the full Moon. To make a mass map that covers the entire cluster required observations that probed 39 regions of the galaxy cluster.

The investigation has resulted in the most comprehensive study of the distribution of dark matter in a galaxy cluster so far and extends more than 20 million light-years from its centre, much further than previous investigations. Many groups of researchers have tried to perform these types of measurements with ground-based telescopes. However, the technique relies heavily on finding the exact shapes of distant galaxies behind the cluster. The sharp vision of a space telescope such as NASA-ESA’’s Hubble is superior.

The study reveals that the density of dark matter on large scales drops sharply with distance from the cluster centre. This confirms a picture that has emerged from recent detailed computer simulations.

As Richard Ellis says: "Although theorists have predicted the form of dark matter in galaxy clusters from numerical simulations based on the effects of gravity alone, this is the first time we have convincing observations to back them up. Some astronomers had speculated clusters might contain large reservoirs of dark matter in their outermost regions. Assuming our cluster is representative, this is not the case."

The team noticed that dark matter appears to clump together in their map. For example, they found concentrations of dark matter associated with galaxies known to be slowly falling into the system. Generally, the researchers found that the dark matter traces the cluster galaxies remarkably well and over an unprecedented range of physical scales.

"When a cluster is being assembled, the dark matter will be smeared out between the galaxies where it acts like a glue," says Jean-Paul Kneib."The overall association of dark matter and ‘glowing matter’ is very convincing evidence that structures like CL0024+1654 grow by merging of smaller groups of galaxies that were already bound by their own dark matter components."

Future investigations using Hubble’’s new camera, the Advanced Camera for Surveys (ACS), will extend this work when Hubble is trained on a second galaxy cluster later this year. ACS is 10 times more efficient than the Wide Field and Planetary Camera 2 used for this investigation, making it possible to study finer mass clumps in galaxy clusters and help work out how the clusters are assembled.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaCP/SEME3PXO4HD_FeatureWeek_0.html
http://idw-online.de/public/zeige_pm.html?pmid=66900

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>