Peering back in time more than 7 billion years, a team of astronomers using a powerful new spectrograph at the W. M. Keck Observatory in Hawaii has obtained the first maps showing the distribution of galaxies in the early universe. The maps show the clustering of galaxies into a variety of large-scale structures, including long filaments, empty voids, and dense groups and clusters.
These maps are among the first results from the DEEP2 Redshift Survey, an ongoing three-year project designed to study galaxies in the distant universe over a volume comparable to recent surveys of the local universe. Using the new DEIMOS (Deep Extragalactic Imaging Multi-Object Spectrograph) instrument at the 10-meter Keck II Telescope, this project is measuring the properties of distant galaxies as well as mapping out their distribution in space. DEIMOS, which was built precisely for this survey, allows simultaneous, detailed observations of up to 150 galaxies at a time. By studying galaxies whose light has taken billions of years to reach the Earth, the astronomers are effectively looking far back in time.
"For the first time, we are getting a map of the universe as it was 7 billion years ago, when it was roughly half the age it is now. Comparing these observations with local surveys will yield direct clues to some of the most profound mysteries of the universe, such as the nature of dark matter, the nature of dark energy, and the origins of galaxies and quasars," said David Koo, professor of astronomy and astrophysics at the University of California, Santa Cruz.
Tim Stephens | EurekAlert!
Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland
On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated
25.04.2018 | Power and Electrical Engineering
Electrode shape improves neurostimulation for small targets
25.04.2018 | Medical Engineering
Silicon as a new storage material for the batteries of the future
25.04.2018 | Power and Electrical Engineering