Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists in Japan and US find new form of matter


Analysis of data from Jefferson Lab’s CEBAF Large Acceptance Spectrometer supports the pentaquark discovery recently announced by the SPring-8 physics lab in Japan.

Physics Lab in Japan reports evidence for the Pentaquark; Jefferson Lab data supports discovery

A Five-quark state has been discovered, first reported by a group of physicists working at the SPring-8 physics lab in Japan. All confirmed particles known previously have been either combinations of three quarks (baryons, such as protons or neutrons) or two quarks (mesons such as pions or kaons). Although not forbidden by the standard model of particle physics, other configurations of quarks had not been found till now. The "pentaquark" particle, with a mass just above 1.5 GeV, was discovered in the following way. At the Spring-8 facility a laser beam is scattered from a beam of 8-GeV electrons circulating in a synchrotron racetrack. These scattered photons constitute a beam of powerful gamma rays, which were scattered from a fixed target consisting of carbon-12 atoms. The reaction being sought was one in which a gamma and a neutron inside a carbon nucleus collided, leaving a neutron, a K+ meson, and a K- meson in the final state. Efficient detectors downstream of the collision area looked for the evidence of the existence of various combinations of particles, including a short-lived state in which the K+ and the neutron had coalesced. In this case the amalgamated particle, or resonance, would have consisted of the three quarks from the neutron (two "down" quarks and one "up" quark) and the two quarks from the K+ (an up quark and a strange antiquark). The evidence for this collection of five quarks would be an excess of events (a peak) on a plot of "missing" masses deduced from K- particles seen in the experiment (

The Laser-Electron Photon Facility (LEPS) at the SPring-8 machine ( ) is reporting exactly this sort of excess at a mass of 1540 MeV with an uncertainty of 10 MeV. The statistical certainty that this peak is not just a fluctuation in the natural number of background events, and that the excess number of events is indicative of a real particle, is quoted as being 4.6 standard deviations above the background. This, according to most particle physicists, is highly suggestive of discovery. (Nakano et al., Physical Review Letters, upcoming article, probably 11 July 2003; text at; contact Takashi Nakano,

Confirmation of this discovery comes quickly. A team of physicists in the US, led by Ken Hicks of Ohio University (, 740-593-1981) working in the CLAS collaboration at the Dept. of Energy’s Thomas Jefferson National Accelerator Facility, has also found evidence for the pentaquark. A photon beam (each photon being created by smashing the Jefferson Lab electron beam into a target and then measuring the energy of the scattered electron in order to determine the energy of the outgoing gamma) was directed onto a nuclear target. The photon collides with a deuteron target and the neutron-kaon (nK+) final state is studied in the CLAS detector ( ). The TJNAF result was announced at the Conference on the Intersections of Nuclear and Particle Physics ( ) held on May 19-24, 2003, at New York City. Stepan Stepanyan (, 757-269-7196) reported at this meeting that the mass measured for the pentaquark, 1.543 GeV (with an uncertainty of 5 MeV), is very close to the LEPS value. The statistical basis of the CLAS measurement is an impressive 5.4 standard deviations. (This result is about to be submitted to Physical Review Letters.) These results, together with the previous results from SPring-8, now provide firmer evidence for the existence of the pentaquark. The HERMES experiment at the DESY lab in Germany is also pursuing the pentaquark particle.

The discovery of a 5-quark state should be of compelling interest to particle physicists, and this might be only the first of a family of such states. Not only that but a new classification of matter, like a new limb in the family tree of strongly interacting particles: first there were baryons and mesons, now there are also pentaquarks. According to Ken Hicks, a member of both SPring-8 and Jefferson Lab experiments, this pentaquark can be considered as a baryon. Unlike all other known baryons, though, the pentaquark would have a strangeness value of S=+1, meaning that the baryon contains an anti-strange quark. Past searches for this state have all been inconclusive. Hicks attributes the new discovery to better beams, more efficient detectors, and more potent computing analysis power.

Linda Ware | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>