Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists in Japan and US find new form of matter


Analysis of data from Jefferson Lab’s CEBAF Large Acceptance Spectrometer supports the pentaquark discovery recently announced by the SPring-8 physics lab in Japan.

Physics Lab in Japan reports evidence for the Pentaquark; Jefferson Lab data supports discovery

A Five-quark state has been discovered, first reported by a group of physicists working at the SPring-8 physics lab in Japan. All confirmed particles known previously have been either combinations of three quarks (baryons, such as protons or neutrons) or two quarks (mesons such as pions or kaons). Although not forbidden by the standard model of particle physics, other configurations of quarks had not been found till now. The "pentaquark" particle, with a mass just above 1.5 GeV, was discovered in the following way. At the Spring-8 facility a laser beam is scattered from a beam of 8-GeV electrons circulating in a synchrotron racetrack. These scattered photons constitute a beam of powerful gamma rays, which were scattered from a fixed target consisting of carbon-12 atoms. The reaction being sought was one in which a gamma and a neutron inside a carbon nucleus collided, leaving a neutron, a K+ meson, and a K- meson in the final state. Efficient detectors downstream of the collision area looked for the evidence of the existence of various combinations of particles, including a short-lived state in which the K+ and the neutron had coalesced. In this case the amalgamated particle, or resonance, would have consisted of the three quarks from the neutron (two "down" quarks and one "up" quark) and the two quarks from the K+ (an up quark and a strange antiquark). The evidence for this collection of five quarks would be an excess of events (a peak) on a plot of "missing" masses deduced from K- particles seen in the experiment (

The Laser-Electron Photon Facility (LEPS) at the SPring-8 machine ( ) is reporting exactly this sort of excess at a mass of 1540 MeV with an uncertainty of 10 MeV. The statistical certainty that this peak is not just a fluctuation in the natural number of background events, and that the excess number of events is indicative of a real particle, is quoted as being 4.6 standard deviations above the background. This, according to most particle physicists, is highly suggestive of discovery. (Nakano et al., Physical Review Letters, upcoming article, probably 11 July 2003; text at; contact Takashi Nakano,

Confirmation of this discovery comes quickly. A team of physicists in the US, led by Ken Hicks of Ohio University (, 740-593-1981) working in the CLAS collaboration at the Dept. of Energy’s Thomas Jefferson National Accelerator Facility, has also found evidence for the pentaquark. A photon beam (each photon being created by smashing the Jefferson Lab electron beam into a target and then measuring the energy of the scattered electron in order to determine the energy of the outgoing gamma) was directed onto a nuclear target. The photon collides with a deuteron target and the neutron-kaon (nK+) final state is studied in the CLAS detector ( ). The TJNAF result was announced at the Conference on the Intersections of Nuclear and Particle Physics ( ) held on May 19-24, 2003, at New York City. Stepan Stepanyan (, 757-269-7196) reported at this meeting that the mass measured for the pentaquark, 1.543 GeV (with an uncertainty of 5 MeV), is very close to the LEPS value. The statistical basis of the CLAS measurement is an impressive 5.4 standard deviations. (This result is about to be submitted to Physical Review Letters.) These results, together with the previous results from SPring-8, now provide firmer evidence for the existence of the pentaquark. The HERMES experiment at the DESY lab in Germany is also pursuing the pentaquark particle.

The discovery of a 5-quark state should be of compelling interest to particle physicists, and this might be only the first of a family of such states. Not only that but a new classification of matter, like a new limb in the family tree of strongly interacting particles: first there were baryons and mesons, now there are also pentaquarks. According to Ken Hicks, a member of both SPring-8 and Jefferson Lab experiments, this pentaquark can be considered as a baryon. Unlike all other known baryons, though, the pentaquark would have a strangeness value of S=+1, meaning that the baryon contains an anti-strange quark. Past searches for this state have all been inconclusive. Hicks attributes the new discovery to better beams, more efficient detectors, and more potent computing analysis power.

Linda Ware | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>



Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

More VideoLinks >>>