Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Precise nuclear measurements give clues to astronomical X-ray bursts


BURSTER — This double-star system, located approximately 28,000 light-years away in the constellation Sagittarius, is a source of powerful bursts of X-ray emission. Argonne physicists have made precise measurements of exotic isotopes that explain the characteristic X-ray spectrum and luminosities of such "X-ray bursters." Illustration courtesy Dana Berry, Space Telescope Science Institute.

Argonne physicists have precisely measured the masses of nuclear isotopes that exist for only fractions of a second or can only be produced in such tiny amounts as to be almost nonexistent in the laboratory. Some isotopes had their masses accurately measured for the first time.

The results help explain the characteristic X-ray spectrum and luminosities of strange astronomical objects called "X-ray bursters."

X-ray bursters comprise a normal star and a neutron star. Neutron stars are as massive as our sun but collapsed to 10 miles across. The neutron star’s ferocious gravitational field pulls gas from its companion until the neutron star’s surface ignites in a runaway fusion reaction. For a few tens of seconds, the light from the explosion may be the most brilliant source of X-rays in the sky.

The rapid proton capture process, or "rp-process," is the dominant source of energy in a common type of X-ray bursters. In this nuclear fusion reaction, nuclei capture protons and transmute into a heavier element, releasing energy in the process. For example, arsenic-67 can capture a proton to become selenium-68.

The rp-process proceeds in fits and starts, due to what physicists call "waiting-point nuclei." Some nuclides, like selenium-68, can’t absorb an incoming proton as quickly as others can. The reaction must "wait" for the nucleus to absorb a proton - which may take up to 30 minutes, a relative eternity - or for the neutron to decay to a proton, called beta decay, to convert the nuclide into one with a more favorable capture rate. A beta-decay, for example, converts the selenium-68 nucleus into arsenic-68. Arsenic-68 readily captures a proton, changing to selenium-69, and so on.

"How long the nova or X-ray burst lasts, and how far the rp-process reactions proceed, is determined by the properties of these few waiting-point nuclei," said physicist Guy Savard, principal investigator. "Although there are hundreds of nuclei in an X-ray burst, the properties of half a dozen of them make all the difference."

Accurate measurements of waiting-point nuclei masses explain the astronomical observations of X-ray bursts and confirm theories of how they are produced. But measuring their masses is difficult. Some decay in fractions of a second; others can only be produced in such small amounts that standard spectrometry techniques give imprecise results.

Argonne’s Unique ATLAS

Highly accurate mass measurements required the unique facilities available in Argonne’s Physics Division. The nuclei to be studied were created using the Argonne Tandem Linac Accelerator System (ATLAS). For example, selenium-68 was created by accelerating beams of nickel-58 to 220 million electron volts and slamming them into a carbon target. Some of the ions in the beam combine with nuclei in the target to create the ions of interest.

The created ions are slowed to a crawl in a "gas catcher" - a tube filled with pressurized helium. A gentle electric gradient pulls ions into a Canadian Penning Trap Spectrometer developed by Savard and other scientists at Argonne, the University of Manitoba and McGill University, Montreal, Texas A&M University and the State University of New York.

The Penning trap confines ions using magnetic and electric fields. A measurement may involve perhaps only a dozen individual ions, which can stay suspended in the trap for many seconds. Their masses can then be measured using radio-frequency (RF) fields.

"The ions will accept energy from the RF field only at certain frequencies," Savard said. "These frequencies are related to properties of the ion, particularly the mass. By looking at what energies they accept, you can precisely determine the mass."

Ions with previously unknown masses included antimony 107 and 108. The mass of selenium-68 was determined with 30 times more precision than previous, and contradictory, measurements.

"This is a unique system, because with the new gas catcher, we can inject any species that can be produced here at ATLAS," Savard said. "Research is ongoing. We’re now exploring around the tin region, where the rp-process is expected to terminate."

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago as part of the U.S. Department of Energy’s national laboratory system.

For more information, please contact Dave Jacque (630/252-5582 or at Argonne.

Dave Jacque | ANL
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>