Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI study finds dark matter is for superWIMPs

09.07.2003


New class of superweak particles may reveal secrets of hidden mass in universe

A UC Irvine study has revealed a new class of cosmic particles that may shed light on the composition of dark matter in the universe.

These particles, called superweakly interacting massive particles, or superWIMPs, may constitute the invisible matter that makes up as much as one-quarter of the universe’s mass.



UCI physicists Jonathan Feng, Arvind Rajaraman and Fumihiro Takayama report that these new superWIMPs have radically different properties from weakly interacting massive particles (WIMPs), which many researchers have long looked to as the leading dark matter candidate. The study was posted July 3 on the online version of Physical Review Letters (http://prl.aps.org/).

The identity of dark matter is one of the most puzzling problems for those who study the nature of our cosmos. While as much as a quarter of the universe is made of this invisible mass, which plays a vital role in the structure of the universe, almost nothing is known about its composition. It is believed to be the celestial glue that holds galaxies together in their distinctive spiral shapes.

To identify this elusive dark matter, many astrophysical researchers have turned to WIMPs. These particles emit no light and are very difficult to detect. However, as their name suggests, they do have weak-force interactions with other particles, and they are expected to leave visible traces in experiments. Currently, research groups throughout the world are searching for WIMPs, so far without success.

But in studying theories that predict WIMP dark matter, Feng and his colleagues found that in many of these theories WIMPs do not live forever. According to Feng, many theorists have assumed WIMPs to be the lightest particles and thus the most stable. “But we’ve found that WIMPs are often not stable at all, because they can decay into lighter particles,” Feng said, “and, all of a sudden, the WIMPs disappear.”

These new, lighter particles are superWIMPs. Like their progenitors, they emit no light and have both mass and gravitational force. But they are incapable of the type of weak-force interactions that WIMPs have; they can only interact gravitationally. Since the gravitational force is not as strong as the weak force, these interactions are, as Feng calls them, “superweak.” In turn, these particles will rarely, if ever, collide with other particles.

And, unlike WIMPs, superWIMPs are incapable of decaying into other particles. “They are absolutely stable,” Feng said. “And because of this, they are a completely different, but perfectly viable, alternative for dark matter.”

Like WIMPs, superWIMPs only exist theoretically. In fact, because superWIMPs do not have weak-force interactions, they are predicted to be impossible to detect by conventional experimental methods. But Feng and his colleagues point to some alternative tests to prove their existence. They found that observations of old stars and the cosmic microwave background of the universe can reveal clues for superWIMPs.

“One place to look for evidence is in the cosmic microwave background, which in essence is the afterglow of the Big Bang,” Feng said. “This background is very uniform. But according to our theory, WIMP decay would set loose a zoo of particles that would create deviations in this background. If such deviations are found, they would provide a particle fingerprint for the existence of superWIMP dark matter.”

Feng and his collaborators are currently investigating hints for superWIMPs in present data and are considering further studies that might provide evidence for the existence of superWIMP dark matter.

The research was funded by UC Irvine and a CAREER Award from the National Science Foundation.

Tom Vasich | UC Irvine
Further information:
http://prl.aps.org/
http://today.uci.edu/news/release_detail.asp?key=1009

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>