Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI study finds dark matter is for superWIMPs

09.07.2003


New class of superweak particles may reveal secrets of hidden mass in universe

A UC Irvine study has revealed a new class of cosmic particles that may shed light on the composition of dark matter in the universe.

These particles, called superweakly interacting massive particles, or superWIMPs, may constitute the invisible matter that makes up as much as one-quarter of the universe’s mass.



UCI physicists Jonathan Feng, Arvind Rajaraman and Fumihiro Takayama report that these new superWIMPs have radically different properties from weakly interacting massive particles (WIMPs), which many researchers have long looked to as the leading dark matter candidate. The study was posted July 3 on the online version of Physical Review Letters (http://prl.aps.org/).

The identity of dark matter is one of the most puzzling problems for those who study the nature of our cosmos. While as much as a quarter of the universe is made of this invisible mass, which plays a vital role in the structure of the universe, almost nothing is known about its composition. It is believed to be the celestial glue that holds galaxies together in their distinctive spiral shapes.

To identify this elusive dark matter, many astrophysical researchers have turned to WIMPs. These particles emit no light and are very difficult to detect. However, as their name suggests, they do have weak-force interactions with other particles, and they are expected to leave visible traces in experiments. Currently, research groups throughout the world are searching for WIMPs, so far without success.

But in studying theories that predict WIMP dark matter, Feng and his colleagues found that in many of these theories WIMPs do not live forever. According to Feng, many theorists have assumed WIMPs to be the lightest particles and thus the most stable. “But we’ve found that WIMPs are often not stable at all, because they can decay into lighter particles,” Feng said, “and, all of a sudden, the WIMPs disappear.”

These new, lighter particles are superWIMPs. Like their progenitors, they emit no light and have both mass and gravitational force. But they are incapable of the type of weak-force interactions that WIMPs have; they can only interact gravitationally. Since the gravitational force is not as strong as the weak force, these interactions are, as Feng calls them, “superweak.” In turn, these particles will rarely, if ever, collide with other particles.

And, unlike WIMPs, superWIMPs are incapable of decaying into other particles. “They are absolutely stable,” Feng said. “And because of this, they are a completely different, but perfectly viable, alternative for dark matter.”

Like WIMPs, superWIMPs only exist theoretically. In fact, because superWIMPs do not have weak-force interactions, they are predicted to be impossible to detect by conventional experimental methods. But Feng and his colleagues point to some alternative tests to prove their existence. They found that observations of old stars and the cosmic microwave background of the universe can reveal clues for superWIMPs.

“One place to look for evidence is in the cosmic microwave background, which in essence is the afterglow of the Big Bang,” Feng said. “This background is very uniform. But according to our theory, WIMP decay would set loose a zoo of particles that would create deviations in this background. If such deviations are found, they would provide a particle fingerprint for the existence of superWIMP dark matter.”

Feng and his collaborators are currently investigating hints for superWIMPs in present data and are considering further studies that might provide evidence for the existence of superWIMP dark matter.

The research was funded by UC Irvine and a CAREER Award from the National Science Foundation.

Tom Vasich | UC Irvine
Further information:
http://prl.aps.org/
http://today.uci.edu/news/release_detail.asp?key=1009

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>