Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary tungsten photonic crystal could provide more power for electrical devices

09.07.2003


Energy emissions far greater than predicted by Planck’s Law



You can’t get something for nothing, physicists say, but sometimes a radical innovation can come close.

Researchers at Sandia National Laboratories -- exceeding the predictions of a 100-year-old law of physics -- have shown that filaments fabricated of tungsten lattices emit remarkably more energy than solid tungsten filaments in certain bands of near-infrared wavelengths when heated.


This greater useful output offers the possibility of a superior energy source to supercharge hybrid electric cars, electric equipment on boats, and industrial waste-heat-driven electrical generators. The lattices’ energy emissions put more energy into wavelengths used by photovoltaic cells that change light into electricity to run engines.

Because near-infrared is the wavelength region closest to visible light, the day may not be distant when tungsten lattice emissions realized at visible wavelengths provide a foundation for more efficient lighting -- the first significant change in Edison’s light bulb since he invented it.

"This is an important and elegant work," says Cal Tech professor Amnon Yariv of the research achievement. Yariv is a member of the National Academy of Engineering and a leading figure in quantum optics research.

The work has been granted two patents with another pending. Two papers describing the advance have been accepted by the journal Optics Letters. Another will be published by Applied Physics Letters.

Sub-micron-featured lattices -- which resemble very tiny garden lattices carefully stacked one atop the other -- can be mass-produced cheaply with today’s computer-chip technologies.

The lattice itself can be visualized as a construction built of a child’s Lincoln Logs. The tungsten "logs" of this experiment have diameters of 0.5 microns separated by distances of 1.5 microns.

The lattices are also known as photonic crystals because of the crystalline regularity of the spacing of their components. At first such crystals were of interest because they could bend specific frequencies of light without loss of energy. This was because the crystal’s channels were constructed of exactly the right dimensions to form a ’home’ for particular wavebands as they travelled. The innovation of the current method is to use the channels not to bend light but to permit input energy to exit only in the desired frequency bands.

The shadow of Max Planck

The demonstration, led by Sandia physicist Shawn Lin, exceeds in output a well-known law formulated a century ago by Max Planck, one of the founders of modern physics. The equation, called Planck’s Law of Blackbody Cavity Radiation, predicts the maximum emissions expected at any wavelength from ideal solids.

The somewhat startling Sandia results exceeded these predictions by four to 10 times at near-infrared frequencies, says Lin.

In terms of electrical output, for the Sandia lattice heated in a vacuum to 1,250 degrees C -- the typical operating temperature of a thermal photovoltaic generator -- a conversion efficiency of 34 percent was calculated, three times the performance of an ideal blackbody radiator, predicted to be 11 percent.

Electrical power density was calculated to be approximately 14 watt/cm squared, rather than three watt/cm squared expected from an ideal blackbody radiator.

No deterioration of the tungsten lattice was observed, although long-term tests have yet to be run.

Cat vs. supercat

Lin says his group’s work does not break Planck’s law but only modifies it by demonstrating the creation of a new class of emitters.

"To compare the amounts of emissions from a solid and a photonic lattice is like comparing a dog and a cat -- or, a cat and a super cat,"he says.

A photonic lattice apparently subjects energies passing through its links and cavities to more complex photon-tungsten interactions than Planck dreamt of when he derived his system that successfully predicted the output energies of simple heated solids. And a lattice’s output is larger than a solid’s only in the frequency bands the lattice’s inner dimensions permit energy to emerge in.

Still, says Kazuaki Sakoda of Japan’s Nanomaterials Laboratory at the National Institute for Materials Science, "One of the most important issues in contemporary optics is the modification of the nature of the radiation field and its interaction with matter. [Lin’s] recent work clearly demonstrates that even Planck’s law -- the starting point of the era of quantum mechanics [used to predict these interactions] -- can be modified. To my knowledge, [Lin’s papers] are the first experimental report on this matter."

Sakoda’s book, Optical Properties of Photonic Crystals, was published by Springer Verlag, Berlin, 2001.

Theoretically, there are still unresolved questions as to how the process works without contradicting other physical laws.

Nevertheless, MIT physics professor John Joannopoulus in response to a question from a Sandia interviewer had high praise for the work. "It is definitely not a -- how did you put it -- ’a small step forward,’ it’s really a leap forward. It is a very clever completely believable ... I think it’s an exciting experiment, very carefully done, and there’s some really interesting new science here." Joannopoulus is a pioneer in photonic lattices and wrote the first book on the field.

The scientist at rest

Standing in his equipment-cluttered laboratory, Shawn Lin grins happily among the vandalized wreckage of a number of ordinary light bulbs from K-Mart. His team pirates the bulbs’ screw-in bases and glass filament supports for use as cheap, pre-made connectors and supports for the iridescent slivers of photonic lattice his team substitutes for common filaments of solid tungsten.

"Look!" Shawn says with obvious anticipation, and flips a switch connected to where the reconstituted filament sits in a vacuum chamber.

In its little chamber, like a kind of witches’ Sabbath for light bulbs, the bulb, though formerly dead, now glows again, but with a distinctly yellow light. The lattice filament, powered by only two watts, and with most of its output keyed to the infrared range at 1.5 to 2 microns, has enough of a tail into the visible spectrum for the lattice to glow. "We are that far along!" Lin says with satisfaction.

If these results at 1.5 microns can be extended to the visible spectrum, ramifications of this work may help form the next generation of lighting after the currently more mature LED technology.



The increased amount of usable energy available from lattices (also known as photonic crystals) at specific frequencies is important to engineers dealing with electricity-driven engines.

A photonic lattice absorbing energies from a power plant generator’s excess heat could release it at higher frequencies readily absorbable by the photovoltaic cell that powers electricity-driven engines.

While such engines -- best known in the form of electric-powered cars " exist, their efficiencies have been much lower than hoped because their receivers cannot absorb incoming energies across the wide spectrum of infrared radiation generated as unwanted heat but only from limited bands within the broad range. Here, the lattice could serve as a kind of funnel, forcing the heat radiation into predetermined frequency bands. When placed between the generator -- be it solar, dynamo, or fire -- and receiver, the metallic photonic lattice can be engineered to absorb energies, become thermally excited, and release them in only a few frequency bands.

While some energy is lost in this process, it makes available energies from frequencies previously unusable.

Visit the past

A year ago (Nature, May 2, 2002), Lin’s team showed that a tungsten lattice could gather absorbed energies at shorter wavelengths than ordinary tungsten could. Now, Lin with colleagues Jim Fleming, Jim Moreno (ret.), and Ihab El-Kady show actual emissions. The emission measurements were performed with the technical assistance of Jim Bur and Jonathan Rivera. Part of the earlier simulation of tungsten lattice’s optical properties was done at Iowa State University/Ames National Laboratory, in work led by Professor Kai Ming Ho.

The current use of tiny lattices to emanate energy in designated wave bands is a conceptual jump from their earliest appearances over a decade ago, when it was thought their major function would be to bend light without loss for telecommunications. Such lattices were built from semiconductor materials. In the case discussed here, semiconductor materials are used to form a lattice mold into which tungsten is introduced. The semiconductor material is then etched away, resulting in a thin tungsten photonic crystal sample about five micrometers thick.


Sandia National Laboratories’ World Wide Web home page is located at http://www.sandia.gov. Sandia news releases, image gallery, and periodicals can be found at the News and Events button.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>