Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold Molecules Pave Way for Quantum “Super Molecule”

03.07.2003


Achievement Could Improve Understanding of Superconductivity


The images above show the creation of ultracold molecules during the JILA experiments. Left -- A rainbow color scale indicates the numbers of ultracold gaseous potassium (K40) atoms in the vacuum chamber in two different fermion states. White areas have the most atoms, blue areas have the fewest.

Center --After a carefully tuned magnetic field is scanned over the chamber, 50 percent of the atoms "disappear." About half the atoms pair up into loosely bound molecules and are now bosons with different states not detected by the experimental set up.

Right--A low-energy radio wave is directed at the chamber. The molecular bonds are broken and the atoms reappear in a third fermion state (fuzzy blue area in center of image).



A team of researchers at JILA, a joint institute of the Commerce Department’s National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder, has done the physics equivalent of efficiently turning yin into yang. They changed individual potassium atoms belonging to a class of particles called fermions into molecules that are part of a fundamentally different class of particles known as bosons. Though the transformation lasts only a millisecond, the implications may be long lasting.

The work, reported in tomorrow’s edition of the journal Nature, is an important step toward creating a “super molecule,” a blend of thousands of molecules acting in unison that would provide physicists with an excellent tool for studying molecular quantum mechanics and superconductivity. Creation of a “super atom” (known as a Bose-Einstein condensate or BEC; see www.bec.nist.gov for more information) earned another research team at JILA the 2001 Nobel Prize in physics.


In the Nature paper, NIST’s Deborah Jin and colleagues describe their experiments to produce these exotic molecules at temperatures of only about 150 nanoKelvin above absolute zero. The technique involves manipulating a cloud of atoms within an ultra-high vacuum chamber with lasers and magnetic fields to coax the atoms to pair up into loosely joined molecules. Surprisingly, the researchers report, the number of molecules produced is very large—with about a quarter million or 50 percent of the atoms within the original cloud pairing up.

“This work,” Jin notes, “could help us understand the basic physics behind superconductivity and especially high-temperature superconductivity.”

Superconductivity is a property in which electrons (a fermion particle) move through a metal with no resistance. The experiments may lead to creation of fermion superfluids made from gases that would be much easier to study than solid superconductors.

“Our experiments,” Jin continues, “produced the lowest molecular binding energy that has been measured spectroscopically.” In other words, the atom pairs forming each molecule are hanging on to one another by their proverbial fingertips. They also are spaced very far apart by molecular standards. The researchers measured the amount of energy required to hold the molecules together by breaking the molecular bond with a relatively low-energy radio wave. Most molecular bonds require higher-energy light waves to break them apart.

The atoms, a form of potassium with one extra neutron (the isotope of potassium with a molecular weight of 40 rather than the more common 39), are classified as fermions. Fermions are the particles most people are familiar with—i.e., protons, neutrons, electrons—and they obey one basic rule. No fermion can be in exactly the same state at exactly the same time and place as another fermion. Hence, no two things made of ordinary matter can be in exactly the same place at exactly the same time.

The molecules formed from these potassium atoms, however, are bosons. Unlike fermions, bosons can be in exactly the same energy state in exactly the same time and space. Light waves or photons are the most commonly known bosons, and laser light is an example of how bosons can behave in unison. Bose-Einstein condensates (BECs) are the atomic equivalent of lasers. First produced in 1995 by JILA scientists Eric Cornell and Carl Wieman, BECs are a fourth state of matter in which a dense cloud of atoms acts like one huge super atom.

Funded by NIST and the National Science Foundation, the current work of Jin and her colleagues—Cindy A. Regal, Christopher Ticknor and John Bohn—builds on these earlier experiments.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.


Fred McGehan | NIST
Further information:
http://www.nist.gov/public_affairs/releases/coldmolecules.htm

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>