Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultracold Molecules Pave Way for Quantum “Super Molecule”


Achievement Could Improve Understanding of Superconductivity

The images above show the creation of ultracold molecules during the JILA experiments. Left -- A rainbow color scale indicates the numbers of ultracold gaseous potassium (K40) atoms in the vacuum chamber in two different fermion states. White areas have the most atoms, blue areas have the fewest.

Center --After a carefully tuned magnetic field is scanned over the chamber, 50 percent of the atoms "disappear." About half the atoms pair up into loosely bound molecules and are now bosons with different states not detected by the experimental set up.

Right--A low-energy radio wave is directed at the chamber. The molecular bonds are broken and the atoms reappear in a third fermion state (fuzzy blue area in center of image).

A team of researchers at JILA, a joint institute of the Commerce Department’s National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder, has done the physics equivalent of efficiently turning yin into yang. They changed individual potassium atoms belonging to a class of particles called fermions into molecules that are part of a fundamentally different class of particles known as bosons. Though the transformation lasts only a millisecond, the implications may be long lasting.

The work, reported in tomorrow’s edition of the journal Nature, is an important step toward creating a “super molecule,” a blend of thousands of molecules acting in unison that would provide physicists with an excellent tool for studying molecular quantum mechanics and superconductivity. Creation of a “super atom” (known as a Bose-Einstein condensate or BEC; see for more information) earned another research team at JILA the 2001 Nobel Prize in physics.

In the Nature paper, NIST’s Deborah Jin and colleagues describe their experiments to produce these exotic molecules at temperatures of only about 150 nanoKelvin above absolute zero. The technique involves manipulating a cloud of atoms within an ultra-high vacuum chamber with lasers and magnetic fields to coax the atoms to pair up into loosely joined molecules. Surprisingly, the researchers report, the number of molecules produced is very large—with about a quarter million or 50 percent of the atoms within the original cloud pairing up.

“This work,” Jin notes, “could help us understand the basic physics behind superconductivity and especially high-temperature superconductivity.”

Superconductivity is a property in which electrons (a fermion particle) move through a metal with no resistance. The experiments may lead to creation of fermion superfluids made from gases that would be much easier to study than solid superconductors.

“Our experiments,” Jin continues, “produced the lowest molecular binding energy that has been measured spectroscopically.” In other words, the atom pairs forming each molecule are hanging on to one another by their proverbial fingertips. They also are spaced very far apart by molecular standards. The researchers measured the amount of energy required to hold the molecules together by breaking the molecular bond with a relatively low-energy radio wave. Most molecular bonds require higher-energy light waves to break them apart.

The atoms, a form of potassium with one extra neutron (the isotope of potassium with a molecular weight of 40 rather than the more common 39), are classified as fermions. Fermions are the particles most people are familiar with—i.e., protons, neutrons, electrons—and they obey one basic rule. No fermion can be in exactly the same state at exactly the same time and place as another fermion. Hence, no two things made of ordinary matter can be in exactly the same place at exactly the same time.

The molecules formed from these potassium atoms, however, are bosons. Unlike fermions, bosons can be in exactly the same energy state in exactly the same time and space. Light waves or photons are the most commonly known bosons, and laser light is an example of how bosons can behave in unison. Bose-Einstein condensates (BECs) are the atomic equivalent of lasers. First produced in 1995 by JILA scientists Eric Cornell and Carl Wieman, BECs are a fourth state of matter in which a dense cloud of atoms acts like one huge super atom.

Funded by NIST and the National Science Foundation, the current work of Jin and her colleagues—Cindy A. Regal, Christopher Ticknor and John Bohn—builds on these earlier experiments.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

Fred McGehan | NIST
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>