Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold Molecules Pave Way for Quantum “Super Molecule”

03.07.2003


Achievement Could Improve Understanding of Superconductivity


The images above show the creation of ultracold molecules during the JILA experiments. Left -- A rainbow color scale indicates the numbers of ultracold gaseous potassium (K40) atoms in the vacuum chamber in two different fermion states. White areas have the most atoms, blue areas have the fewest.

Center --After a carefully tuned magnetic field is scanned over the chamber, 50 percent of the atoms "disappear." About half the atoms pair up into loosely bound molecules and are now bosons with different states not detected by the experimental set up.

Right--A low-energy radio wave is directed at the chamber. The molecular bonds are broken and the atoms reappear in a third fermion state (fuzzy blue area in center of image).



A team of researchers at JILA, a joint institute of the Commerce Department’s National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder, has done the physics equivalent of efficiently turning yin into yang. They changed individual potassium atoms belonging to a class of particles called fermions into molecules that are part of a fundamentally different class of particles known as bosons. Though the transformation lasts only a millisecond, the implications may be long lasting.

The work, reported in tomorrow’s edition of the journal Nature, is an important step toward creating a “super molecule,” a blend of thousands of molecules acting in unison that would provide physicists with an excellent tool for studying molecular quantum mechanics and superconductivity. Creation of a “super atom” (known as a Bose-Einstein condensate or BEC; see www.bec.nist.gov for more information) earned another research team at JILA the 2001 Nobel Prize in physics.


In the Nature paper, NIST’s Deborah Jin and colleagues describe their experiments to produce these exotic molecules at temperatures of only about 150 nanoKelvin above absolute zero. The technique involves manipulating a cloud of atoms within an ultra-high vacuum chamber with lasers and magnetic fields to coax the atoms to pair up into loosely joined molecules. Surprisingly, the researchers report, the number of molecules produced is very large—with about a quarter million or 50 percent of the atoms within the original cloud pairing up.

“This work,” Jin notes, “could help us understand the basic physics behind superconductivity and especially high-temperature superconductivity.”

Superconductivity is a property in which electrons (a fermion particle) move through a metal with no resistance. The experiments may lead to creation of fermion superfluids made from gases that would be much easier to study than solid superconductors.

“Our experiments,” Jin continues, “produced the lowest molecular binding energy that has been measured spectroscopically.” In other words, the atom pairs forming each molecule are hanging on to one another by their proverbial fingertips. They also are spaced very far apart by molecular standards. The researchers measured the amount of energy required to hold the molecules together by breaking the molecular bond with a relatively low-energy radio wave. Most molecular bonds require higher-energy light waves to break them apart.

The atoms, a form of potassium with one extra neutron (the isotope of potassium with a molecular weight of 40 rather than the more common 39), are classified as fermions. Fermions are the particles most people are familiar with—i.e., protons, neutrons, electrons—and they obey one basic rule. No fermion can be in exactly the same state at exactly the same time and place as another fermion. Hence, no two things made of ordinary matter can be in exactly the same place at exactly the same time.

The molecules formed from these potassium atoms, however, are bosons. Unlike fermions, bosons can be in exactly the same energy state in exactly the same time and space. Light waves or photons are the most commonly known bosons, and laser light is an example of how bosons can behave in unison. Bose-Einstein condensates (BECs) are the atomic equivalent of lasers. First produced in 1995 by JILA scientists Eric Cornell and Carl Wieman, BECs are a fourth state of matter in which a dense cloud of atoms acts like one huge super atom.

Funded by NIST and the National Science Foundation, the current work of Jin and her colleagues—Cindy A. Regal, Christopher Ticknor and John Bohn—builds on these earlier experiments.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.


Fred McGehan | NIST
Further information:
http://www.nist.gov/public_affairs/releases/coldmolecules.htm

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>