Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab’s Upgraded Free-Electron Laser Produces First Light

03.07.2003


A view inside JLab’s Free-Electron Laser vault, showing the upgraded linear accelerator on the right and the infrared wiggler magnet on the left.


Researchers at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility have produced first light from their 10 kilowatt Free-Electron Laser (FEL). This device has been upgraded from the "one kilowatt Infrared Demonstration" FEL, which broke power records by delivering 2,100 watts of infrared light during 2001. Only one and one-half years after the one kilowatt FEL was dismantled, the newly improved FEL, designed to produce 10 kilowatts of infrared and one kilowatt of ultraviolet light, is undergoing commissioning toward the goal of producing 10 kilowatts by summer’s end.

According to Rear Admiral Jay Cohen, Chief of Naval Research, "This project builds on the successful seven-year partnership forged between the Office of Science’s Jefferson Lab and the Office of Naval Research. The original kilowatt FEL exceeded the Navy’s goals and expectations and we expect no less from the upgraded FEL."

The Free-Electron Laser upgrade project is funded by the Department of Defense’s Office of Naval Research (ONR), Air Force Research Laboratory and the Joint Technology Office. Jefferson Lab is managed for the Department of Energy’s Office of Science by a consortium of universities in the southeast called the Southeastern Universities Research Association.



To enable experimenters to probe deep inside the atom’s nucleus with electrons, Jefferson Lab pioneered superconducting technology for accelerating electrons to high energy in efficient, cost-effective accelerators. Jefferson Lab’s superconducting electron-accelerating technology offers two commanding cost advantages for FELs: the laser can stay on 100% of the time instead of only 1% or 2%, and more than 90% of the energy that is not converted to useful light in a single pass can be recycled.

The Navy’s interest in this technology is the development and demonstration of an electrically driven tunable laser that can operate at infrared wavelengths where light is most efficiently transmitted in the atmosphere for potential applications toward shipboard defense.

During the two and one-half years the so-called one-kilowatt FEL operated, it broke all existing power records for tunable high-average power lasers. It was used by more than 30 different research groups representing the Navy, NASA, universities and industry for a variety of applications ranging from the investigation of new cost-effective methods for producing carbon nanotubes and understanding the dynamics of hydrogen defects in silicon to investigating how proteins transport energy. These research groups are eagerly awaiting the newly upgraded FEL and are making plans for its use.


For additional information, contact Thomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, Virginia or the Office of Naval Research:


Linda Ware (ware@jlab.org)
Jefferson Lab Public Affairs Manager
(757) 269-7689 (fax: 7398)
Gail Cleere, (cleereg@onr.navy.mil)
ONR Public Affairs Officer
(703) 696-4987

Linda Ware | TJNAF
Further information:
http://www.jlab.org/news/archive/2003/firstlight.html

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>