Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab’s Upgraded Free-Electron Laser Produces First Light

03.07.2003


A view inside JLab’s Free-Electron Laser vault, showing the upgraded linear accelerator on the right and the infrared wiggler magnet on the left.


Researchers at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility have produced first light from their 10 kilowatt Free-Electron Laser (FEL). This device has been upgraded from the "one kilowatt Infrared Demonstration" FEL, which broke power records by delivering 2,100 watts of infrared light during 2001. Only one and one-half years after the one kilowatt FEL was dismantled, the newly improved FEL, designed to produce 10 kilowatts of infrared and one kilowatt of ultraviolet light, is undergoing commissioning toward the goal of producing 10 kilowatts by summer’s end.

According to Rear Admiral Jay Cohen, Chief of Naval Research, "This project builds on the successful seven-year partnership forged between the Office of Science’s Jefferson Lab and the Office of Naval Research. The original kilowatt FEL exceeded the Navy’s goals and expectations and we expect no less from the upgraded FEL."

The Free-Electron Laser upgrade project is funded by the Department of Defense’s Office of Naval Research (ONR), Air Force Research Laboratory and the Joint Technology Office. Jefferson Lab is managed for the Department of Energy’s Office of Science by a consortium of universities in the southeast called the Southeastern Universities Research Association.



To enable experimenters to probe deep inside the atom’s nucleus with electrons, Jefferson Lab pioneered superconducting technology for accelerating electrons to high energy in efficient, cost-effective accelerators. Jefferson Lab’s superconducting electron-accelerating technology offers two commanding cost advantages for FELs: the laser can stay on 100% of the time instead of only 1% or 2%, and more than 90% of the energy that is not converted to useful light in a single pass can be recycled.

The Navy’s interest in this technology is the development and demonstration of an electrically driven tunable laser that can operate at infrared wavelengths where light is most efficiently transmitted in the atmosphere for potential applications toward shipboard defense.

During the two and one-half years the so-called one-kilowatt FEL operated, it broke all existing power records for tunable high-average power lasers. It was used by more than 30 different research groups representing the Navy, NASA, universities and industry for a variety of applications ranging from the investigation of new cost-effective methods for producing carbon nanotubes and understanding the dynamics of hydrogen defects in silicon to investigating how proteins transport energy. These research groups are eagerly awaiting the newly upgraded FEL and are making plans for its use.


For additional information, contact Thomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, Virginia or the Office of Naval Research:


Linda Ware (ware@jlab.org)
Jefferson Lab Public Affairs Manager
(757) 269-7689 (fax: 7398)
Gail Cleere, (cleereg@onr.navy.mil)
ONR Public Affairs Officer
(703) 696-4987

Linda Ware | TJNAF
Further information:
http://www.jlab.org/news/archive/2003/firstlight.html

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>