Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JLab’s CLAS physicists learn a little more about ‘nothing,’ get thrown for a spin

03.07.2003


Daniel S. Carman (Ohio University) and nearly 150 members of Jefferson Lab’s CLAS Collaboration studied the spin transfer from a polarized electron beam to a produced Lambda particle. Their results were recently published in Physical Review Letters.



Measurements taken using Jefferson Lab’s CEBAF Large Acceptance Spectrometer (CLAS) are telling us more about how matter is produced from "nothing," that is, the vacuum.
Using the CLAS in Hall B, Daniel S. Carman of Ohio University and nearly 150 members of the CLAS Collaboration studied the spin transfer from a polarized electron beam to a produced Lambda particle. Their results were recently published in Physical Review Letters.

The CLAS experimenters collided JLab’s polarized electron beam into a proton target, producing a polarized Lambda (?0) and a kaon (K+). Physicists have long known that matter and anti-matter can be created when energetic particles strike one another. The new particles are not really created from "nothing." They are created from the available kinetic energy of the colliding particles. Visualize a bowling ball hitting its rack of 10 pins so hard that the 10 pins turn into 11 normal pins and one "anti-pin." Energy is conserved and so is matter; that’s why a new anti-matter particle is created each time a matter particle is created.



In a simple quark model of the reaction dynamics, a circularly polarized virtual photon strikes an oppositely polarized up quark inside the proton . The spin of the struck quark flips in direction and the quark recoils from its neighbors, stretching a flux-tube of gluonic matter between them. When the stored energy in the flux-tube is sufficient, the tube is "broken" by production of a strange quark-antiquark pair. Using this simple picture, the researchers could explain the angular dependence of the Lambda polarization if the quark pair was produced with the spins in opposite directions, or anti-aligned.

Putting the right spin on it

These anti-aligned spins could throw theorists into a spin. According to the popular triplet-P-zero (3P0) model, a quark-antiquark pair is produced with vacuum quantum numbers, and that means their spins should be aligned. These results imply that the 3P0 model may not be as widely applicable as was thought.

Winston Roberts, a theorist at Jefferson Lab and associate professor of physics at Old Dominion University, finds the CLAS measurement very interesting. "If they are right, it means we have to rethink what we thought we understood about our models for baryon decays," he says. "The CLAS results may also be saying something about what we understand of baryons themselves -- our knowledge of how to describe scattering processes such as the one they measure, or even that there may be oddities, peculiarities, dare I say ’strangeness,’ in the way strange quark-antiquark pairs are produced."

The experimenters expect further reaction from theorists. "Polarized Lambda production is obviously sensitive to the spin-dynamics of quark-pair creation," says Mac Mestayer, a JLab staff scientist, and one of the lead authors on the paper. "We eagerly await confirmation, or refutation, of the conclusions of our simple model by realistic theoretical calculations."

Meanwhile, Carman adds, the researchers are planning further experiments. "Our group is continuing this exciting research by extending our arguments to test our picture of the dynamics in different reactions."

These results show that we have much still to learn about the basic structure of the vacuum. One hundred years ago the vacuum was thought to consist of an "ether" through which light propagated as waves. Albert Michelson, Edward Morley, Albert Einstein and others disproved this hypothesis and the vacuum became an empty void. Twentieth century quantum field theories have now filled this once-empty space with virtual particles. It’s now obvious that a vacuum is not the cold, empty place it was once thought to be. JLab physicists and researchers are studying the spin of the produced quarks in hopes of understanding the vacuum better, as well as the matter that populates it.


###
by Mac Mestayer in collaboration with Melanie O’Byrne

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>