Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA experiments validate 50-year-old hypothesis

02.07.2003


NASA-funded researchers recently obtained the first complete proof of a 50-year-old hypothesis explaining how liquid metals resist turning into solids


The photo on the July cover of Physics Today shows a solid metal sample of titanium-zirconium-nickel alloy inside the Electrostatic Levitator at NASA’s Marshall Space Flight Center in Huntsville, Ala. Using electromagnetic energy to levitate the sample was crucial because stray contamination from containers causes crystals to form inside liquid metals, which ruins measurements on pure samples. (NASA/MSFC/Emmett Given)



The research is featured on the cover of the July issue of Physics Today. It challenges theories about how crystals form by a process called nucleation, important in everything from materials to biological systems.

"Nucleation is everywhere," said Dr. Kenneth Kelton, the physics professor who leads a research team from Washington University in St. Louis. "It’s the major way physical systems change from one phase to another. The better we understand it, the better we can tailor the properties of materials to meet specific needs," he said.


Using the Electrostatic Levitator at NASA’s Marshall Space Flight Center in Huntsville, Ala., Kelton’s team proved the hypothesis by focusing on the "nucleation barrier." German physicist Gabriel D. Fahrenheit, while working on his temperature scale, first observed the barrier in the 1700s. When he cooled water below freezing, it didn’t immediately turn into ice but hung around as liquid in a supercooled state. That’s because it took a while for all the atoms to do an atomic "shuffle" arranging in patterns to form ice crystals.

In 1950, Dr. David Turnbull and Dr. Robert Cech, researchers at the General Electric Company in Schenectady, N.Y., showed liquid metals also resist turning into solids. In 1952, physicist Dr. Charles Frank, of the University of Bristol in England, explained this "undercooling" behavior as a fundamental mismatch in the way atoms arrange themselves in the liquid and solid phases. Atoms in a liquid metal are put together into the form of an icosahedron, a pattern with 20 triangular faces that can’t be arranged to form a regular crystal.

"The metal doesn’t change to a solid instantly, because it costs energy for the atoms to move from the icosahedral formation in the liquid to a new pattern that results in a regular crystal structure in the solid metal," explained Kelton. "It’s like being in a valley and having to climb over a mountain to get to the next valley. You expend energy to get over the barrier to a new place," he said.

Frank didn’t know about quasicrystals, first discovered in 1984, and researchers didn’t have tools like NASA’s Electrostatic Levitator. Using electrostatic energy to levitate the sample was crucial, because stray contamination from containers cause crystals to form inside liquid metals, which would have ruined Kelton’s measurements on pure samples.

To measure atom locations inside a drop of titanium-zirconium-nickel alloy, the levitator was moved to the Advanced Photon Source at Argonne National Laboratory in Chicago. There, an energetic beam of X-rays was used to map the average atom locations as the metal turned from liquid to solid. The experiment was repeated several times, and the data definitively verified Frank’s hypothesis.

As the temperature was decreased to solidify the molten sample, an icosahedral local structure developed in the liquid metal. It cost less energy to form the quasicrystal, because it had an icosahedral structure. This caused the quasicrystal to nucleate first, even though it was less stable than the crystal phase that should have formed. The icosahedral liquid structure was therefore directly linked to the nucleation barrier, as proposed by Frank.

To prepare for an International Space Station experiment, the team is continuing levitator experiments. The new techniques being developed for these studies can be applied to solve advanced materials problems on Earth and for spacecraft applications.

"As NASA scientists develop advanced materials for rocket engines and spacecraft, our facility will be a technological tool they can use to characterize materials," said Dr. Jan Rogers, a Marshall Center scientist who assisted Kelton’s research team.

Kelton’s team at Washington University included Geun Wu Lee, a graduate student, and Anup Gangopadhyay, a research scientist; Jan Rogers, Tom Rathz and Mike Robinson, all of the Marshall Center; Robert Hyers, University of Massachusetts, Amherst; and Doug Robinson, Ames Laboratory, U.S. Department of Energy, Ames, Iowa.

Kelton conducts his research under NASA’s Materials Science Program managed by the Marshall Center. The research is funded by the Physical Science Research Program — part of NASA’s Office of Biological and Physical Research in Washington, D.C., the Marshall Center Director’s Discretionary Fund and Internal Research and Development funds from the Marshall Center’s Science Directorate.

A peer-reviewed article that discusses this work appeared in the May 16 issue of Physical Review Letters. The research was featured in the May 30 issue of Science.

Steve Roy | MSFC News Center
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2003/03-104.html
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>