Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking Sharp: Images from New Gemini Spectrograph rival view from space

01.07.2003


Gemini Observatory’s new spectrograph, without the help of adaptive optics, recently captured images that are among the sharpest ever obtained of astronomical objects from the ground.



Along with the images and spectra acquired during recent commissioning of the Gemini Multi-Object Spectrograph (GMOS) on the 8-metre Gemini South Telescope in Chile, one image is particularly compelling. This Gemini image reveals remarkable details, previously only seen from space, of the Hickson Compact Group 87 (HCG87). HCG87 is a diverse group of galaxies located about 400 million light years away in the direction of the constellation Capricornus. A striking comparison with the Hubble Space Telescope image of this object, including resolution data, can be viewed at http://www.gemini.edu/media/images_2003-3.html

"Historically, the main advantage of large ground-based telescopes, like Gemini, is the huge mirrors that collect significantly more light for spectroscopy than is possible with a telescope in space," said Phil Puxley, Gemini Associate Director of the Gemini South Telescope located on Cerro Pachón, Chile. He explains "The Hubble Space Telescope is able to do things that are impossible from the ground. However, ground-based telescopes like Gemini, when conditions are right, approach the quality of optical images now only possible from space. One key area - spectroscopy of faint objects, which requires large apertures and fine image quality - is where large telescopes like Gemini provide a powerful, complementary capability to space-based telescopes."


GMOS was built as a joint partnership between Gemini, Canada and the UK at a cost of over £3 million. Separately, the U.S. National Optical Astronomy Observatory provided the detector subsystem and related software. The instrument was built by a group of astronomers and engineers from the UK Astronomy Technology Centre in Edinburgh, Durham University and the Hertzberg Institute of Astrophysics in Canada.

GMOS-South is currently undergoing commissioning on the 8-metre Gemini South Telescope at Cerro Pachon, Chile. "GMOS-S worked right out of the box, or rather, right out of the 24 crates that brought the 2-tonne instrument to Chile from Canada and the UK - just like its northern counterpart did when it arrived on Hawaii’’s Mauna Kea, " says Dr.Bryan Miller, head of the commissioning team. The GMOS programme demonstrates the advantage of building two nearly identical instruments. Experience and software from GMOS-North have helped us commission this instrument more rapidly and smoothly than we could have done otherwise," explains Dr Miller. He adds, "Although the images from GMOS are spectacular, the instrument is primarily a spectrograph and that is where its capabilities are most significant for scientists." GMOS-South is expected to begin taking science data in August 2003.

As a multi-object spectrograph, GMOS is capable of obtaining hundreds of spectra in one "snapshot." The ability to deliver high-resolution images is a secondary function. "It used to take an entire night to obtain one spectrum," explains Dr. Inger Jørgensen who led the commissioning of the first GMOS instrument on the Frederick C. Gillette Gemini Telescope over a year ago. "With GMOS, we can collect 50-100 spectra simultaneously. Combined with Gemini’’s 8-metre mirror, we can now efficiently study galaxies and galaxy clusters at vast distances - distances so large that the light has travelled for half the age of the Universe or more before reaching Earth. This capability presents unprecedented possibilities for investigating how galaxies formed and evolved in the early Universe."

GMOS achieves this remarkable sensitivity partly because of its technologically advanced detector, which consists of over 28 million pixels, and partly because of multiple innovative features of the Gemini dome and telescope that reduce local atmospheric distortions around the telescope. "When we designed Gemini, we paid careful attention to controlling heat sources and providing excellent ventilation," said Larry Stepp, former Gemini Optics Manager. Stepp elaborates, "For example, we constructed 3-story high vents on the sides of the Gemini enclosures. It is great to see this image that provides such a dramatic validation of our approach."

Dr Rob Ivison, GMOS Project Scientist at the UK Astronomy Technology Centre in Edinburgh,
said "The Gemini Observatory and its powerful new instrument, gives UK astronomers a unique opportunity to investigate the zoo of galaxies, piecing together the sequence of events that lead to the universe we see today. We can begin our painstaking detective work, peering through time to an age when the earth was nothing but a bunch of primordial atoms, long before our solar system formed, when the first stars and galaxies were lighting up the universe."

The twin Gemini Telescopes offer a unique advantage, explains Director of the Gemini Observatory Dr Matt Mountain. "Now that both telescopes are equipped with nearly identical GMOS instruments, we have created an unprecedented uniform platform to coherently study and take deep spectra of any object in the northern or southern sky at optical wavelengths."

Dr Adrian Russell, Director of the UK Astronomy Technology Centre in Edinburgh adds to this,
"With the on schedule delivery and successful commissioning of GMOS-S, for the first time the Gemini twins can act as one, allowing a co-ordinated study of the entire sky."

Upgrades to GMOS-S that will increase its variety of capabilities are planned even as the instrument is undergoing commissioning. An Integral Field Unit (IFU) on GMOS-S is anticipated to begin commissioning in early 2004.

Like GMOS-N, which has already received and commissioned its IFU, the IFU on GMOS-S will greatly enhance its spectra collection abilities, such as probing the dynamics of active galactic nuclei. Jeremy Allington-Smith, leader of the IFU team at the University of Durham said:
"GMOS-S will soon be fitted with an integral field unit like its sister in the north. Made by the University of Durham, it uses more than a thousand optical fibres, tipped at each end with microscopic lenses, to dissect the object under study. This gives GMOS a 3-D view of the target, in which each pixel in the image is replaced by a spectrum. This innovation allows GMOS to make detailed maps of, for example, the motion of stars and gas in galaxies."



Gill Ormrod | alfa
Further information:
http://www.roe.ac.uk/atc/projects/gmos
http://www.gemini.edu/media/images_2003-3.html
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>