Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Firehose-like jet discovered in action

01.07.2003


Photo: Chandra image of the Vela pulsar (NASA/CXC/Penn State/G. Pavlov et al.)


An X-ray movie of the Vela pulsar, made from a series of observations by NASA’s Chandra X-ray Observatory, reveals a spectacularly erratic jet that varies in a way never seen before. The jet of high-energy particles whips about like an untended firehose at about half the speed of light. This behavior gives scientists new insight into the nature of jets from pulsars and black holes.

Chandra observed the Vela pulsar, a rotating neutron star, 13 times between January 2000 and August 2002. These observations, which were designed to study the nature of the outflow of matter and antimatter from the pulsar led to the discovery that an outer jet of particles was bending and moving sideways at phenomenal speeds.

"This jet is half a light year in length, and is shooting out ahead of the moving pulsar," said George Pavlov of Pennsylvania State University in University Park, lead author of a paper in the July 10th issue of The Astrophysical Journal. "The most striking thing about this jet is how rapidly it changes both its shape and brightness. Such strong, fast variability has never been observed in astrophysical jets."



The time-lapse movie shows that in a matter of weeks the jet changes from being straight to hook-shaped, while bright blobs move along the jet at about half the speed of light. The jet is composed of extremely high-energy electrons or positrons (an antimatter form of electrons) that are spiraling around a magnetic field. The particles in the jet are created and accelerated by voltages 100 million times that of a lightning bolt. These voltages produced by the combined action of the fast rotation of the neutron star and its intense magnetic field.

Over its entire length, the width of the jet remains approximately constant. This suggests that the jet is confined by magnetic fields generated by electrons flowing along the axis of the jet. Laboratory studies of jets or beams have shown that they can change rapidly due to an effect called the "firehose instability."

"Imagine a firehose lying on the ground," said Marcus Teter, also of Penn State and co-author on the paper. "After you turn on the water, you will see different parts of the hose kinking up, and moving rapidly in different directions, pushed by the increased pressure at the bends in the hose. The Vela jet resembles a hose made of magnetic fields, which confines the electrically charged particles."

The instability could be triggered by the strong head-wind created as the pulsar moves through the surrounding gas at a speed of 300,000 kilometer per hour (about 200,000 miles per hour). The bright blobs in the jet are thought to be a manifestation of the increased magnetic field and particle pressure at the kinks in the jet.

The observed brightness of the outer jet and the rapid motions of the jet and blobs in it indicate that the bright arcs around the pulsar may not be rings circling its equator, as previously thought. Instead, they may represent shock waves caused by the motion of the inner jet through the cloud of particles around the pulsar.

"The study of pulsar jets is important not only in itself," said Oleg Kargaltsev, a Penn State graduate student and co-investigator, "but it could also help to understand the nature of the enormous jets coming from supermassive black holes. Those jets may also vary, but on time scales of millions of years, instead of weeks as in the Vela pulsar jet."

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Steve Roy | EurekAlert!
Further information:
http://chandra.nasa.gov
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2003/03-103.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>