Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Italian-French interferometer Virgo will be inaugurated on July 23rd


This innovative instrument is aimed to hunt the elusive gravitational waves using extremely sophisticated technological solutions.

On July 23rd in Cascina, near Pisa (Italy), the new Virgo interferometer will be inaugurated. The innovative Virgo gravitational-wave-detector is the outcome of more than ten years of collaborative research and development between the National Institute of Nuclear Physics (Infn, Italy) and the National Scientific Research Centre (Cnrs, France). Letizia Moratti, Italy’s Minister for Education and Research, and Claudie Haigneré, the French Minister for Research and New Technologies, will participate in the inauguration ceremony. Journalists are also being invited to tour the scientific infrastructure and interview researchers.

The existence of gravitational waves is one of the most fascinating puzzles of modern physics. They are predicted by Albert Einstein’s general theory of relativity, and their existence has been demonstrated indirectly (Joseph. H. Taylor and Russell A. Hulse received the Nobel Prize for this discovery in 1993), but until now it has never been possible to observe them directly. "Gravitational waves are elusive perturbations of space-time curvature, produced by material bodies when accelerating, and can be considered similar to electromagnetic waves emitted by charged particles when they are accelerating. They are difficult to detect, however, because of the fact that they are extremely weak perturbations and, at the best, we can only hope to register those produced by huge phenomenona, like the explosion of a supernova, the interaction between a neutron star and a black hole, or the fusion of two neutron stars belonging to a binary system", says Enzo Iarocci, president of Infn.

"Virgo will reveal these gravitational waves using extremely sophisticated technological solutions. The measurement system is based on a laser beam that is split into two identical and perpendicular beams by a ’beam dividing’ mirror. Each beam goes into an optical hollow (known as a Fabry-Perot cavity) that holds two mirrors, one close by and the other positioned three kilometres away. The beams always travel in a vacuum. Each photon of the beams undergoes an average of 50 reflections before it exits the hollow and returns to the ’beam dividing’ mirror. This mirror then recombines the two beams and another device measures the interference between them. If a gravitational wave collides with the mirrors of the Fabry-Perot cavities, the distance between the mirrors changes and the interference of the two beams becomes disturbed. From the variation of the interference is possible to detect the signal produced by a gravitational wave", explains Adalberto Giazotto, Virgo’s scientific coordinator. To make the system work, it is also necessary to have very advanced mechanical equipment that allows a perfect sealing from the external environment and that prevents perturbations that could mask the passage of the wave. In proportion, the accuracy required to observe the existence of gravitational waves is analogous to the precision needed to measure the distance between the Earth and the Sun with an error lower than the diameter of an atom, but on a scale of billions of times smaller!

"Virgo is the result of a project begun in the 1980s and inspired by the ideas and pioneering development of the Infn team in Pisa, with the collaboration of the Cnrs group, at that time directed by Alain Brillet. Afterwards, other teams from Cnrs, In2P3 and Infn joined the original group of people: in particular, Lal Orsay, Espci Paris, Lapp Annecy, Ipn Lyon, Infn Naples, Infn Perugia, Infn’s National Laboratories of Frascati, Infn Roma 1 and Infn Florence-Urbino. The interferometer has already passed its initial running tests and within the next few months the working of all component systems will be verified. After that, it will begin recording data. The mirrors, made with nanometer precision, and its sophisticated mechanical systems make Virgo one of the most sensitive instruments in the global network, which also includes the American Ligo, the Anglo-German Geo and the Japanese Tama", says Adalberto Giazotto.

At the moment the Virgo project operates in the context of the Ego laboratory (European Gravitational Observatory), built on purpose by Infn and Cnrs. "The difficulty of intercepting the waves hypothesized by Einstein demonstrates that we still have much to understand about gravitational force, even though it has attracted mankind from time immemorial, since among all the forces it is the one that shows the most evident effects in everyday life", says Virgo director Filippo Menzinger.

Italy occupies a prominent position in the field of gravitational wave research and Infn has, among all the detectors in the world, those that permit the exploration of the largest frequency band of gravitational waves. Besides Virgo, two ultracryogenic bars are in active use: Nautilus (at the National Laboratories of Frascati, near Rome) and Auriga (at the National Laboratories of Legnaro, near Padua). These two detectors, which are kept at a temperature very close to absolute zero (-273 Celsius degrees) are thought to be the coldest large objects in the entire Universe. This peculiarity allows the bars to register weak signals from Space, minimizing the perturbations due to internal thermal agitation of molecules.

Filippo Menzinger, Ego Director
Phone: 39-050-752300 - 39-050-752511 - 39-335-732-1386
Adalberto Giazotto, Virgo Coordinator
Phone: 39-050-752559 - 39-347-371-8870

Barbara Gallavotti, Head of the Infn Communication Office
Phone: 39-06-686-8162 - 39-335-660-6075

Filippo Menzinger | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>