Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find Paschen in the bar

26.06.2003


An international team of astronomers have used a unique instrument on the 8-m Gemini South Telescope to determine the ages of stars across the central region of the barred spiral galaxy, M83. Preliminary results provide the first hints of a domino model of star formation where star formation occurs in a time sequence, driven by the movements of gas and stars in the central bar.



The new instrument, called CIRPASS, simultaneously produces 500 spectra, taken from across the whole region of interest, which act as a series of "fingerprints". Encoded in these "fingerprints" is not only all the information the team required to determine when individual groups of stars formed, but also information on their movements and chemical properties. Dr. Johan Knapen, project co-investigator said, "The unique combination of a state-of-the-art instrument like CIRPASS with one of the most powerful telescopes available is now providing us with truly sensational observations."

M83 is a "grand-design" spiral galaxy undergoing an intense burst of star formation in its central bar region. Large-scale images of the visible light from the galaxy, taken with ground based telescopes, show a pronounced bar across the middle of the galaxy, seen as a diagonal white structure. Astronomers believe that it is the influence of this bar that leads a concentration of gas in the central regions of the galaxy from which stars are born. "The central region of M83 is enshrouded in dust but, by using CIRPASS, which operates in the infra-red not the visible, we are able to see through this dust and investigate the hidden physical processes at work in the galaxy," said Dr Ian Parry, leader of the CIRPASS instrumentation team.


Two competing theories strive to explain the burst of star formation in the centre of the galaxy, M83. One theory suggests that stars form randomly across the whole nuclear region. A second model, favoured by the observational team, proposes that star-formation is triggered by the bar structure. In this model, the rotation of gas and stars in the bar causes stars to be formed sequentially, in a domino manner.

Using a technique first demonstrated by Dr. Stuart Ryder and colleagues, the team searched for a hydrogen emission feature, the Paschen-beta line, within the galaxy’’s "fingerprints". The measurement of this feature indicates the presence of hot young stars. By comparing the strengths of the Paschen-beta emission with the amount of absorption from carbon-monoxide (arising in the cool atmospheres of old giant stars) the team are able determine the age of the stars in each region of the galaxy. "A detailed analysis of the data is underway but initial results hint at a complex sequence of star formation," said Dr Robert Sharp, instrument support scientist with CIRPASS.

Preliminary analysis of other emission features (due to Paschen-beta and ionized iron) revealed a potentially intriguing result. "Ionized iron enables us to trace past supernova explosions. The observations indicate that energy from exploding stars (supernovae) may be being passed into regions of undisturbed gas causing further massive star formation," said Dr. Stuart Ryder, principle investigator.

While some members of the instrument team are presenting their work at an exhibition at the Royal Society in London on 1st, 2nd and 3rd July, CIRPASS is back on the Gemini South Telescope in Chile, performing the next set of observations.

Lisa Wright | alfa
Further information:
http://www.ast.cam.ac.uk/~ljw/Press/cirpass_final.html

More articles from Physics and Astronomy:

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

nachricht Filling the early universe with knots can explain why the world is three-dimensional
17.10.2017 | Vanderbilt University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>