Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find Paschen in the bar

26.06.2003


An international team of astronomers have used a unique instrument on the 8-m Gemini South Telescope to determine the ages of stars across the central region of the barred spiral galaxy, M83. Preliminary results provide the first hints of a domino model of star formation where star formation occurs in a time sequence, driven by the movements of gas and stars in the central bar.



The new instrument, called CIRPASS, simultaneously produces 500 spectra, taken from across the whole region of interest, which act as a series of "fingerprints". Encoded in these "fingerprints" is not only all the information the team required to determine when individual groups of stars formed, but also information on their movements and chemical properties. Dr. Johan Knapen, project co-investigator said, "The unique combination of a state-of-the-art instrument like CIRPASS with one of the most powerful telescopes available is now providing us with truly sensational observations."

M83 is a "grand-design" spiral galaxy undergoing an intense burst of star formation in its central bar region. Large-scale images of the visible light from the galaxy, taken with ground based telescopes, show a pronounced bar across the middle of the galaxy, seen as a diagonal white structure. Astronomers believe that it is the influence of this bar that leads a concentration of gas in the central regions of the galaxy from which stars are born. "The central region of M83 is enshrouded in dust but, by using CIRPASS, which operates in the infra-red not the visible, we are able to see through this dust and investigate the hidden physical processes at work in the galaxy," said Dr Ian Parry, leader of the CIRPASS instrumentation team.


Two competing theories strive to explain the burst of star formation in the centre of the galaxy, M83. One theory suggests that stars form randomly across the whole nuclear region. A second model, favoured by the observational team, proposes that star-formation is triggered by the bar structure. In this model, the rotation of gas and stars in the bar causes stars to be formed sequentially, in a domino manner.

Using a technique first demonstrated by Dr. Stuart Ryder and colleagues, the team searched for a hydrogen emission feature, the Paschen-beta line, within the galaxy’’s "fingerprints". The measurement of this feature indicates the presence of hot young stars. By comparing the strengths of the Paschen-beta emission with the amount of absorption from carbon-monoxide (arising in the cool atmospheres of old giant stars) the team are able determine the age of the stars in each region of the galaxy. "A detailed analysis of the data is underway but initial results hint at a complex sequence of star formation," said Dr Robert Sharp, instrument support scientist with CIRPASS.

Preliminary analysis of other emission features (due to Paschen-beta and ionized iron) revealed a potentially intriguing result. "Ionized iron enables us to trace past supernova explosions. The observations indicate that energy from exploding stars (supernovae) may be being passed into regions of undisturbed gas causing further massive star formation," said Dr. Stuart Ryder, principle investigator.

While some members of the instrument team are presenting their work at an exhibition at the Royal Society in London on 1st, 2nd and 3rd July, CIRPASS is back on the Gemini South Telescope in Chile, performing the next set of observations.

Lisa Wright | alfa
Further information:
http://www.ast.cam.ac.uk/~ljw/Press/cirpass_final.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>