Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrafast laser reveals details about slow electrons

24.06.2003


With the help of ultrafast lasers, Dutch researcher Anouk Wetzels from the FOM Institute for Atomic and Molecular Physics has visualised the wave function of slow electrons. The wave function describes how the electron moves around the nucleus of an atom. With this it is possible to directly visualise atomic and even molecular wave functions.

Wetzels used light pulses with a duration of a millionth of a millionth of a second to visualise the wave function of electrons in atoms. With these rapid pulses the physicist specifically kicked electrons out of an atom. A special technique called velocity map imaging was then used to visualise the speed distribution of the electrons. This resulted in a direct measurement of the wave function of an electron in a Rydberg atom.

In Rydberg atoms the outermost electron is so slow that the orbiting time is longer than the duration of an ultrafast light pulse. As a result of this, the interaction between the pulse, which consists of just half a wavelength, and the electron can be seen as a ’kick’. The result of the kick depends on the location and speed of the electron in its orbit around the nucleus. By kicking the electron in the direction of the detector, the speeds of the electrons perpendicular to the detector remain unchanged.



In velocity map imaging the electrons collide with a fluorescent screen. The collisions here cause points of light. The researchers measure the speeds in the surface of the detector and in this manner obtain two-dimensional data about the wave function of the electron.

Light consists of waves with a given wavelength. But light can also be described as a collection of particles, so-called photons. These photons have a specific energy which is directly related to the wavelength of the light. Therefore all of the photons in a blue light pulse have the same amount of energy. When they interact with a material, photons transfer their energy to the electrons in atoms or molecules.

However this photon theory, based on quantum mechanics, could not be used in Wetzels’ experiments. Instead of using light of one given colour, she used light pulses that contained photons with different energies. The Rydberg electron absorbs several photons simultaneously. The interaction results in a targeted force, or in other words a sudden kick, from the light pulse. This mechanism can be described by the simpler theory of classical mechanics.

Just as light is both a particle and a wave, each particle can also be described as a wave. Therefore electrons are not just negatively-charged particles but also waves with a certain amplitude and wavelength. In quantum mechanics these waves are used to calculate the probability of encountering an electron at a certain time in a certain place.


For further information please contact Anouk Wetzels (AMOLF Institute for Atomic and Molecular Physics). The doctoral thesis will be defended on 1 July 2003. Ms Wetzels supervisor is Prof. W.J. van der Zande, tel. 31-24-365-2025, e-mail: zande@sci.kun.nl.

The research was funded by the Netherlands Organisation for Scientific Research.

Nalinie Moerlie | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>