Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrafast laser reveals details about slow electrons

24.06.2003


With the help of ultrafast lasers, Dutch researcher Anouk Wetzels from the FOM Institute for Atomic and Molecular Physics has visualised the wave function of slow electrons. The wave function describes how the electron moves around the nucleus of an atom. With this it is possible to directly visualise atomic and even molecular wave functions.

Wetzels used light pulses with a duration of a millionth of a millionth of a second to visualise the wave function of electrons in atoms. With these rapid pulses the physicist specifically kicked electrons out of an atom. A special technique called velocity map imaging was then used to visualise the speed distribution of the electrons. This resulted in a direct measurement of the wave function of an electron in a Rydberg atom.

In Rydberg atoms the outermost electron is so slow that the orbiting time is longer than the duration of an ultrafast light pulse. As a result of this, the interaction between the pulse, which consists of just half a wavelength, and the electron can be seen as a ’kick’. The result of the kick depends on the location and speed of the electron in its orbit around the nucleus. By kicking the electron in the direction of the detector, the speeds of the electrons perpendicular to the detector remain unchanged.



In velocity map imaging the electrons collide with a fluorescent screen. The collisions here cause points of light. The researchers measure the speeds in the surface of the detector and in this manner obtain two-dimensional data about the wave function of the electron.

Light consists of waves with a given wavelength. But light can also be described as a collection of particles, so-called photons. These photons have a specific energy which is directly related to the wavelength of the light. Therefore all of the photons in a blue light pulse have the same amount of energy. When they interact with a material, photons transfer their energy to the electrons in atoms or molecules.

However this photon theory, based on quantum mechanics, could not be used in Wetzels’ experiments. Instead of using light of one given colour, she used light pulses that contained photons with different energies. The Rydberg electron absorbs several photons simultaneously. The interaction results in a targeted force, or in other words a sudden kick, from the light pulse. This mechanism can be described by the simpler theory of classical mechanics.

Just as light is both a particle and a wave, each particle can also be described as a wave. Therefore electrons are not just negatively-charged particles but also waves with a certain amplitude and wavelength. In quantum mechanics these waves are used to calculate the probability of encountering an electron at a certain time in a certain place.


For further information please contact Anouk Wetzels (AMOLF Institute for Atomic and Molecular Physics). The doctoral thesis will be defended on 1 July 2003. Ms Wetzels supervisor is Prof. W.J. van der Zande, tel. 31-24-365-2025, e-mail: zande@sci.kun.nl.

The research was funded by the Netherlands Organisation for Scientific Research.

Nalinie Moerlie | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>