Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Playing billiards with light provides cheaper lasers

24.06.2003


Dutch physicists from Leiden University have made an experimental laser that combines the advantages of two types of laser. With the experimental laser, which generates light in a sort of billiards table with round edges, the researchers have demonstrated that is possible to produce cheaper lasers.



A conventional laser reflects light between two very accurately positioned mirrors, the so-called resonant cavity. The distance between the mirrors determines which wavelength is amplified and therefore which colour of light remains. Conventional lasers are expensive due to the costs of the mirrors. This is because the mirrors in a laser have to be very accurately curved. Furthermore, the form and the quality of the mirrors must satisfy stringent technical specifications and the distance between the mirrors has to be set and maintained with extreme precision.

The ’’random laser’’ provides an alternative. Such a laser is much less sensitive to technical imperfections of the resonant cavity, for example. A random laser works with a large number of different light colours. Up until now this type of laser has worked using light-diffusing particles and this has a number of disadvantages. Physicists would prefer such lasers to make use of mirrors.


Jos Dingjan’s doctoral research contributed to the successful construction of an experimental random laser that works with mirrors. The resonant cavity consists of three standard mirrors which produce a resonant cavity in the form of a billiards table with ’’round’’ corners. The mirrors are easily placed in a variety of set-ups on an experimental table. This enables the researchers to perform a wide range of experiments.

The middle mirror, half way along the radiation passage of the light, is located almost perpendicularly. This causes the necessary disruption to the light waves. The desired wave chaos was found to arise at the third mirror. With the addition of a light amplifier a laser beam can in principle be generated here.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>