Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Playing billiards with light provides cheaper lasers

24.06.2003


Dutch physicists from Leiden University have made an experimental laser that combines the advantages of two types of laser. With the experimental laser, which generates light in a sort of billiards table with round edges, the researchers have demonstrated that is possible to produce cheaper lasers.



A conventional laser reflects light between two very accurately positioned mirrors, the so-called resonant cavity. The distance between the mirrors determines which wavelength is amplified and therefore which colour of light remains. Conventional lasers are expensive due to the costs of the mirrors. This is because the mirrors in a laser have to be very accurately curved. Furthermore, the form and the quality of the mirrors must satisfy stringent technical specifications and the distance between the mirrors has to be set and maintained with extreme precision.

The ’’random laser’’ provides an alternative. Such a laser is much less sensitive to technical imperfections of the resonant cavity, for example. A random laser works with a large number of different light colours. Up until now this type of laser has worked using light-diffusing particles and this has a number of disadvantages. Physicists would prefer such lasers to make use of mirrors.


Jos Dingjan’s doctoral research contributed to the successful construction of an experimental random laser that works with mirrors. The resonant cavity consists of three standard mirrors which produce a resonant cavity in the form of a billiards table with ’’round’’ corners. The mirrors are easily placed in a variety of set-ups on an experimental table. This enables the researchers to perform a wide range of experiments.

The middle mirror, half way along the radiation passage of the light, is located almost perpendicularly. This causes the necessary disruption to the light waves. The desired wave chaos was found to arise at the third mirror. With the addition of a light amplifier a laser beam can in principle be generated here.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>