Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful ’conveyor belts’ drive Sun’s 11-year cycle, new evidence suggests

20.06.2003


NASA and university astronomers have found evidence the 11-year sunspot cycle is driven in part by a giant conveyor belt-like, circulating current within the Sun.


Sunspots appear as dark spots on the Sun’s surface. (Big Bear Solar Observatory/New Jersey Institute of Technology)



The astronomers, Dr. David Hathaway, Robert Wilson and Ed Reichmann of NASA’s Marshall Space Flight Center in Huntsville, Ala., and Dr. Dibyendu Nandy of Montana State University in Bozeman, reported their findings the week of June 16 at the annual meeting of the Solar Physics Division of the American Astronomical Society in Laurel, Md. The results were also published in the May 20 issue of the Astrophysical Journal.

The astronomers made their discovery by reviewing the positions and sizes of all sunspots seen on the Sun since 1874. "The sunspots appear in two bands on either side of the Sun’s equator," said Hathaway. "Although the individual sunspots come and go from week-to-week, the central positions of the bands in which they appear drift slowly toward the solar equator over the course of each 11-year sunspot cycle."


Previously, scientists believed this equator-ward drift was a wave-like process involving magnetic forces. However, this new evidence suggests this drift is produced by a giant circulation system in which the compressed gases, 125,000 miles below the Sun’s surface, move from the Sun’s poles to its equator at about three mph — a leisurely walking pace. The gases then rise near the equator and turn back toward the poles, traveling in the surface layers where the gas is less compressed — moving at a faster rate of approximately 20 to 40 mph. Recent progress in theoretical modeling of the sunspot cycle has emphasized the important role of this circulation.

The speed of this circulation system, called a meridional circulation, changes slightly from one sunspot cycle to the next. The circulation is faster in cycles shorter than the average 11-year period and slower in cycles longer than the average period. This is a strong indication that this circulation acts like an internal clock that sets the period of the sunspot cycle.

The circulation also appears to influence the strength of future cycles, as seen in the number and sizes of the sunspots produced, not in the cycle immediately following, but rather in a two-cycle or 22-year time lag. When the flow is fast, it concentrates the magnetic field at the Sun’s poles. These stronger fields are then transported downward into the solar interior where they are further compressed and amplified to become the intense magnetic fields that form sunspots years later.

The Sun is now in the declining phase of the current sunspot cycle that peaked in 2000 and 2001. Because the circulation flow was fast during the previous cycle, the astronomers believe the next cycle will be a strong one, peaking in the years 2010 and 2011.

Contact: Steve Roy, steve.roy@msfc.nasa.gov

| NASA
Further information:
http://www.msfc.nasa.gov/news

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>