Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The universe just became a little simpler

18.06.2003


Using images from the Hubble Space Telescope, astronomers have concluded that two of the most common types of galaxies in the universe are in reality different versions of the same thing. In spite of their similar-sounding names, astronomers had long considered “dwarf elliptical” and “giant elliptical” galaxies to be distinct objects. The new findings, which appear in this month’s edition of The Astronomical Journal, fundamentally alter astronomers’ understanding of these important components of the universe.


Artist’s impression of two black holes evacuating the center of a galaxy. Credit: Gabriel Perez Diaz; MultiMedia Service; Instituto de Astrofísica de Canarias (IAC).



Galaxies, the building blocks of the visible universe, are enormous systems of stars bound together by gravity and scattered throughout space. There are several different types, or shapes. For example, the Milky Way galaxy, in which the Earth resides, is a “spiral” galaxy, so named because its disk-like shape has an embedded spiral arm pattern. Other galaxies are known as “irregular” galaxies because they do not have distinct shapes. But together, dwarf and giant elliptical galaxies are the most common.

For the past two decades, astronomers have considered giant elliptical galaxies, which contain hundreds of billions of stars, and dwarf elliptical galaxies, which typically contain less than one billion stars, as completely separate systems. In many ways it was a natural distinction: not only do giant elliptical galaxies contain more stars, but the stars are more closely packed toward the centers of such galaxies. In other words, the overall distribution of stars appeared to be fundamentally different.


Alister Graham and Rafael Guzmán from the University of Florida decided to take a second look at the accepted wisdom. Expanding on work started by Graham at the Instituto de Astrofísica de Canarias (IAC) in Spain, the pair analyzed images of dwarf elliptical galaxies taken by the Hubble Space Telescope and combined their results with previously collected data on over 200 galaxies. The resulting sample revealed distributions of stars displaying a continuous variety of structures between the allegedly different dwarf and giant galaxy classes - in other words, these two types were just relatively extreme versions of the same object. Moreover, there was one rather interesting caveat.

In recent years, Graham said, a number of studies had revealed that the innermost centers of giant elliptical galaxies - the inner 1 percent - had been scoured out or emptied of stars. Astronomers suspect that massive black holes are responsible, gravitationally hurling away any stars that ventured too near and devouring the stars that came in really close. This scouring phenomenon had tended to dim the centers of giant elliptical galaxies, which ran counter to the trend that bigger galaxies tend to have brighter centers. The dimming phenomenon was one reason astronomers had concluded dwarf and giant galaxies must be different types.

Together with Ignacio Trujillo of the Max-Planck Institut für Astronomie in Germany and Peter Erwin and Andres Asensio Ramos of the IAC, Graham addresses this phenomenon in a separate article that appears in the same issue of The Astronomical Journal. Building on recent revelations showing a strong connection between the mass of the central black holes and the properties of their host galaxies, Graham and his colleagues introduced a new mathematical model that simultaneously describes the distribution of stars in the inner and outer parts of the galaxy. “It was only after allowing for the modification of the cores by the black holes that we were able to fully unify the dwarf and giant galaxy population,” Graham said.

“This helps to simplify the universe slightly because we can replace two distinct galaxy types with one,” said Graham. “But the implications go beyond mere astronomical taxonomy. Astronomers had thought the formation mechanisms for these objects must be different, but instead there must be a unifying construction process.”

Sidney van den Bergh, former director and researcher emeritus at the Dominion Astrophysical Observatory at the National Research Council of Canada in Victoria, said Graham and Guzmán’s result puts to rest a “very puzzling” question.

“In astronomy, like in physical anthropology, there is a deep connection between the classification of species and their evolutionary connections,” van den Bergh said. “The bottom line is that the new work of Graham and Guzmán has made life a little bit simpler for those of us who want to understand how galaxies are formed and have evolved.”

Alister Graham | alfa
Further information:
http://www.iac.es/gabinete/noticias/2003/m06d16.htm

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>