Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s ’Spirit’ Rises On Its Way To Mars

10.06.2003


A NASA robotic geologist named Spirit began its seven-month journey to Mars at 1:58:47 p.m. Eastern Daylight Time (10:58:47 a.m. Pacific Daylight Time) today when its Delta II launch vehicle thundered aloft from Cape Canaveral Air Force Station, Fla.



The spacecraft, first of a twin pair in NASA’s Mars Exploration Rover project, separated successfully from the Delta’s third stage about 36 minutes after launch, while over the Indian Ocean. Flight controllers at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., received a signal from the spacecraft at 2:48 p.m. Eastern Daylight Time (11:48 a.m. Pacific Daylight Time) via the Canberra, Australia, antenna complex of NASA’s Deep Space Network. All systems are operating as expected.

Spirit will roam a landing area on Mars that bears evidence of a wet history. The rover will examine rocks and soil for clues to whether the site may have been a hospitable place for life. Spirit’s twin, Opportunity, which is being prepared for launch as early as 12:38 a.m. Eastern Daylight Time June 25 (9:38 p.m. Pacific Daylight Time on June 24) , will be targeted to a separate site with different signs of a watery past.


"We have plenty of challenges ahead, but this launch went so well, we’re delighted," said JPL’s Pete Theisinger, project manager for the Mars Exploration Rover missions.

The spacecraft’s cruise-phase schedule before arriving at Mars next Jan. 4, Universal Time (Jan. 3 in Eastern and Pacific time zones), includes a series of tests and calibrations, plus six opportunities for maneuvers to adjust its trajectory. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Exploration Rover project for the NASA Office of Space Science, Washington, D.C.

Information about the rovers and the scientific instruments they carry is available online from JPL at http://mars.jpl.nasa.gov/mer and from Cornell University, Ithaca, N.Y., at http://athena.cornell.edu .

Veronica McGregor | NASA
Further information:
http://mars.jpl.nasa.gov/mer
http://athena.cornell.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>