Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s ’Spirit’ Rises On Its Way To Mars

10.06.2003


A NASA robotic geologist named Spirit began its seven-month journey to Mars at 1:58:47 p.m. Eastern Daylight Time (10:58:47 a.m. Pacific Daylight Time) today when its Delta II launch vehicle thundered aloft from Cape Canaveral Air Force Station, Fla.



The spacecraft, first of a twin pair in NASA’s Mars Exploration Rover project, separated successfully from the Delta’s third stage about 36 minutes after launch, while over the Indian Ocean. Flight controllers at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., received a signal from the spacecraft at 2:48 p.m. Eastern Daylight Time (11:48 a.m. Pacific Daylight Time) via the Canberra, Australia, antenna complex of NASA’s Deep Space Network. All systems are operating as expected.

Spirit will roam a landing area on Mars that bears evidence of a wet history. The rover will examine rocks and soil for clues to whether the site may have been a hospitable place for life. Spirit’s twin, Opportunity, which is being prepared for launch as early as 12:38 a.m. Eastern Daylight Time June 25 (9:38 p.m. Pacific Daylight Time on June 24) , will be targeted to a separate site with different signs of a watery past.


"We have plenty of challenges ahead, but this launch went so well, we’re delighted," said JPL’s Pete Theisinger, project manager for the Mars Exploration Rover missions.

The spacecraft’s cruise-phase schedule before arriving at Mars next Jan. 4, Universal Time (Jan. 3 in Eastern and Pacific time zones), includes a series of tests and calibrations, plus six opportunities for maneuvers to adjust its trajectory. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Exploration Rover project for the NASA Office of Space Science, Washington, D.C.

Information about the rovers and the scientific instruments they carry is available online from JPL at http://mars.jpl.nasa.gov/mer and from Cornell University, Ithaca, N.Y., at http://athena.cornell.edu .

Veronica McGregor | NASA
Further information:
http://mars.jpl.nasa.gov/mer
http://athena.cornell.edu

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>