Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flattest Star Ever Seen

11.06.2003


VLT Interferometer Measurements of Achernar Challenge Stellar Theory


The shape of the bright southern star Achernar; from VLTI observations (model)



To a first approximation, planets and stars are round. Think of the Earth we live on. Think of the Sun, the nearest star, and how it looks in the sky.

But if you think more about it, you realize that this is not completely true. Due to its daily rotation, the solid Earth is slightly flattened ("oblate") - its equatorial radius is some 21 km (0.3%) larger than the polar one. Stars are enormous gaseous spheres and some of them are known to rotate quite fast, much faster than the Earth. This would obviously cause such stars to become flattened. But how flat?


Recent observations with the VLT Interferometer (VLTI) at the ESO Paranal Observatory have allowed a group of astronomers to obtain by far the most detailed view of the general shape of a fast-spinning hot star, Achernar (Alpha Eridani), the brightest in the southern constellation Eridanus (The River).

They find that Achernar is much flatter than expected - its equatorial radius is more than 50% larger than the polar one! In other words, this star is shaped very much like the well-known spinning-top toy, so popular among young children.

The high degree of flattening measured for Achernar - a first in observational astrophysics - now poses an unprecedented challenge for theoretical astrophysics. The effect cannot be reproduced by common
models of stellar interiors unless certain phenomena are incorporated, e.g. meridional circulation on the surface ("north-south streams") and non-uniform rotation at different depths inside the star.

As this example shows, interferometric techniques will ultimately provide very detailed information about the shapes, surface conditions and interior structure of stars.

The full text of this Press Release, with three photos (ESO PR Photos 15a-c/03) and all related links, is available at:
http://www.eso.org/outreach/press-rel/pr-2003/pr-14-03.html

VLTI observations of Achernar

Test observations with the VLT Interferometer (VLTI) at the Paranal Observatory proceed well, and the astronomers have now begun to exploit many of these first measurements for scientific purposes.

One spectacular result, just announced, is based on a series of observations of the bright, southern star Achernar (Alpha Eridani; the name is derived from "Al Ahir al Nahr" = "The End of the River"), carried out between September 11 and November 12, 2002. The two 40-cm siderostat test telescopes that served to obtain "First Light" with the VLT Interferometer in March 2001 were also used for these observations. They were placed at selected positions on the VLT Observing Platform at the top of Paranal to provide a "cross-shaped" configuration with two "baselines" of 66 m and 140 m, respectively, at 90° angle, cf. PR Photo 15a/03.

At regular time intervals, the two small telescopes were pointed towards Achernar and the two light beams were directed to a common focus in the VINCI test instrument in the centrally located VLT Interferometric Laboratory. Due to the Earth’’s rotation during the observations, it was possible to measure the angular size of the star (as seen in the sky) in different directions.

Achernar’s profile

A first attempt to measure the geometrical deformation of a rapidly rotating star was carried out in 1974 with the Narrabri Intensity Interferometer (Australia) on the bright star Altair by British astronomer Hanbury Brown. However, because of technical limitations, those observations were unable to decide between different models for this star. More recently, Gerard T. Van Belle and collaborators observed Altair with the Palomar Testbed Interferometer (PTI), measuring its apparent axial ratio as 1.140 ± 0.029 and placing some constraints upon the relationship between rotation velocity and stellar inclination.

Achernar is a star of the hot B-type, with a mass of 6 times that of the Sun. The surface temperature is about 20,000 °C and it is located at a distance of 145 light-years.

The apparent profile of Achernar (PR Photo 15b/03), based on about 20,000 VLTI interferograms (in the K-band at wavelength 2.2 µm) with a total integration time of over 20 hours, indicates a surprisingly high axial ratio of 1.56 ± 0.05 [3]. This is obviously a result of Achernar’s rapid rotation.

Theoretical implications of the VLTI observations

The angular size of Achernar’’s elliptical profile as indicated in PR Photo 15b/03 is 0.00253 ± 0.00006 arcsec (major axis) and 0.00162 ± 0.00001 arcsec (minor axis) [4], respectively. At the indicated distance, the corresponding stellar radii are equal to 12.0 ± 0.4 and 7.7 ± 0.2 solar radii, or 8.4 and 5.4 million km, respectively. The first value is a measure of the star’’s equatorial radius. The second is an upper value for the polar radius - depending on the inclination of the star’s polar axis to the line-of-sight, it may well be even smaller.

The indicated ratio between the equatorial and polar radii of Achernar constitutes an unprecedented challenge for theoretical astrophysics, in particular concerning mass loss from the surface enhanced by the rapid rotation (the centrifugal effect) and also the distribution of internal angular momentum (the rotation velocity at different depths).

The astronomers conclude that Achernar must either rotate faster (and hence, closer to the "critical" (break-up) velocity of about 300 km/sec) than what the spectral observations show (about 225 km/sec from the widening of the spectral lines) or it must violate the rigid-body rotation.

The observed flattening cannot be reproduced by the "Roche-model" that implies solid-body rotation and mass concentration at the center of the star. The failure of that model is even more evident if the so-called "gravity darkening" effect is taken into account - this is a non-uniform temperature distribution on the surface which is certainly present on Achernar under such a strong geometrical deformation.

Outlook

This new measurement provides a fine example of what is possible with the VLT Interferometer already at this stage of implementation. It bodes well for the future research projects at this facility.

With the interferometric technique, new research fields are now opening which will ultimately provide much more detailed information about the shapes, surface conditions and interior structure of stars. And in a not too distant future, it will become possible to produce interferometric images of the disks of Achernar and other stars.

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2003/pr-14-03.html

More articles from Physics and Astronomy:

nachricht Spiral arms: not just in galaxies
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>