Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clamps away, Mars Express eases its grip on its lander

06.06.2003


Europe’s first mission to the Red Planet, continues its successful mission with another successful ’’high-risk’’ post-launch milestone. Mars Express engineers breathed a sigh of relief this morning at the European Space Operations Centre (ESOC), in Germany.



If a particularly delicate operation had not proceeded as planned, it would have been impossible to deploy the Mars Express lander, Beagle 2, on arrival at Mars.
This crucial operation consisted of releasing Beagle-2’s launch clamps. These clamps are extra attachments that ensure the lander stays perfectly fixed to the spacecraft during the launch and is not affected by launch vibrations. After the launch, these clamps are no longer needed, since another mechanism keeps Beagle 2 in place during the six-month trip to the Red Planet.

This second mechanism allows Mars Express to deploy Beagle 2 on arrival at Mars. However, if the launch clamps had not released today, the second mechanism would have failed. "The Beagle-2 mission would have been over before it had even started!" commented ESA Lander Manager, Con McCarthy.



The release of the launch clamps started at 10.10 CEST and lasted about 30 minutes. The release mechanism itself is unusual. Usually, launch clamps contain a firework-like mechanism, but Mars Express had a much gentler release mechanism for Beagle. It consisted of a sleeve over a clamp bolt; an electric current heats the sleeve to about 100°C. At that temperature, the sleeve expands and the bolt snaps. There were three bolts and they all broke in sequence.

"We had to wait two minutes for the expansion of the sleeve which snapped the bolt. The atmosphere in the room was tense and those two minutes seemed to last an eternity! When the first bolt went, a lot of tension was released," says McCarthy.

There are more hurdles ahead but Mars Express is demonstrating that it can deal with the many challenges on the way to the Red Planet.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/SPECIALS/Mars_Express/SEM6BSS1VED_0.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>