Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Million-star cluster in nearby galaxy reported

06.06.2003


A small, bizarre cluster of a million young stars, enshrouded in thick gas and dust in a nearby dwarf galaxy, has been confirmed by Jean Turner, UCLA professor of physics and astronomy, and her colleagues, in the June 5 issue of the journal Nature.


Pseudo-color image of dwarf galaxy NGC 5253.
Blue: adapted from Hubble Space Telescope optical image; red: infrared image from the Keck Telescope. The supernebula/embedded million-star young cluster is the brightest infrared source, visible to the upper right of the central bright optical star cluster. Courtesy: D. Calzetti, Space Telescope Science
Institute.


Infrared picture of the starburst and forming super star clusters in the
dwarf galaxy NGC 5253. The "supernebula"/embedded million-star cluster is the brightest infrared source, near the center of the plot. Courtesy: UCLA Astronomy.



Turner and her colleagues estimate that the stars are still in the process of forming, and are less than a million years old — extremely young by astronomical standards.

The cluster contains more than 4,000 massive “O” stars, each a million times brighter than our sun, with more than 30 times the mass of our sun. “O” stars blow off violent winds, and are the most luminous of all known stars. These “O” stars will become supernovae and explode at the end of their lives, but none has done so yet.


“This is the first time such a large cluster of ‘O’ stars, bound with its natal gas, has been observed anywhere in the universe,” Turner said. “These ‘O’ stars should not fit in this small region, yet somehow they do.”

The research is federally funded by the National Science Foundation.

The star cluster is buried within a “supernebula” consisting of hot gases in the galaxy NGC 5253, in the southern part of the sky, slightly above the horizon, in the constellation Centaurus. The supernebula is hidden from optical view by its own gases.

The astronomers used the Keck Observatory’s Near Infrared Spectrometer, an instrument built by Turner’s UCLA astronomy colleague, professor Ian McLean, to study the star cluster.

The stars are packed tightly in a region only three light years across — less than the distance from our sun to its closest neighbor star, Turner said.

The star cluster is surrounded by thick gases that move faster than 100,000 miles per hour — faster than the speed of sound — yet they are trapped by gravity.

“The dense gases are bound by the enormous gravity of the cluster, which makes this cluster different from any other known young cluster,” Turner said. “It’s truly a unique object. I originally titled this paper, ‘Supernebula in Gravitational Bondage.’ Clusters in our galaxy are not nearly as massive and cannot trap their gas.”

In the Milky Way, globular clusters containing hundreds of thousands of stars are billions of years old, having formed early in our galaxy’s history. Some astronomers had believed globular clusters could form only in the early universe, yet this nearby galaxy is forming globular clusters.

“It’s a mystery why this tiny galaxy can form globular clusters at the present time and the Milky Way can’t,” Turner said. “We hope to be able to solve this mystery. How a million stars can form in such a small region is also a mystery.”

The cluster has one billion times the luminosity of our sun, but is invisible in ordinary light. Turner’s team detected the cluster using infrared and radio observations. The astronomers detected the radio emission of the object in 1996, but needed the new infrared analyses to exclude possibilities other than the star cluster, and to see that the gases are trapped by gravity, Turner said.

Turner and her colleagues — Sara Beck, astronomy professor at Tel Aviv University’s School of Physics and Astronomy in Israel; former UCLA astronomy graduate students Lucian Crosthwaite and David Meier; James Larkin, assistant professor of physics and astronomy at UCLA; and Ian McLean, professor of astronomy at UCLA — analyzed infrared hydrogen spectra from NGC 5253, a galaxy that contains hundreds of large star clusters.

Turner and her colleagues will look for other examples of young star clusters, and hope to learn more about star formation within this cluster, using infrared and radio emissions.

“We haven’t observed this type of start formation before,” Turner said. “This globular cluster is invisible to ultraviolet telescopes, and could remain invisible for most of its star-forming lifetime.”

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>