Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Million-star cluster in nearby galaxy reported

06.06.2003


A small, bizarre cluster of a million young stars, enshrouded in thick gas and dust in a nearby dwarf galaxy, has been confirmed by Jean Turner, UCLA professor of physics and astronomy, and her colleagues, in the June 5 issue of the journal Nature.


Pseudo-color image of dwarf galaxy NGC 5253.
Blue: adapted from Hubble Space Telescope optical image; red: infrared image from the Keck Telescope. The supernebula/embedded million-star young cluster is the brightest infrared source, visible to the upper right of the central bright optical star cluster. Courtesy: D. Calzetti, Space Telescope Science
Institute.


Infrared picture of the starburst and forming super star clusters in the
dwarf galaxy NGC 5253. The "supernebula"/embedded million-star cluster is the brightest infrared source, near the center of the plot. Courtesy: UCLA Astronomy.



Turner and her colleagues estimate that the stars are still in the process of forming, and are less than a million years old — extremely young by astronomical standards.

The cluster contains more than 4,000 massive “O” stars, each a million times brighter than our sun, with more than 30 times the mass of our sun. “O” stars blow off violent winds, and are the most luminous of all known stars. These “O” stars will become supernovae and explode at the end of their lives, but none has done so yet.


“This is the first time such a large cluster of ‘O’ stars, bound with its natal gas, has been observed anywhere in the universe,” Turner said. “These ‘O’ stars should not fit in this small region, yet somehow they do.”

The research is federally funded by the National Science Foundation.

The star cluster is buried within a “supernebula” consisting of hot gases in the galaxy NGC 5253, in the southern part of the sky, slightly above the horizon, in the constellation Centaurus. The supernebula is hidden from optical view by its own gases.

The astronomers used the Keck Observatory’s Near Infrared Spectrometer, an instrument built by Turner’s UCLA astronomy colleague, professor Ian McLean, to study the star cluster.

The stars are packed tightly in a region only three light years across — less than the distance from our sun to its closest neighbor star, Turner said.

The star cluster is surrounded by thick gases that move faster than 100,000 miles per hour — faster than the speed of sound — yet they are trapped by gravity.

“The dense gases are bound by the enormous gravity of the cluster, which makes this cluster different from any other known young cluster,” Turner said. “It’s truly a unique object. I originally titled this paper, ‘Supernebula in Gravitational Bondage.’ Clusters in our galaxy are not nearly as massive and cannot trap their gas.”

In the Milky Way, globular clusters containing hundreds of thousands of stars are billions of years old, having formed early in our galaxy’s history. Some astronomers had believed globular clusters could form only in the early universe, yet this nearby galaxy is forming globular clusters.

“It’s a mystery why this tiny galaxy can form globular clusters at the present time and the Milky Way can’t,” Turner said. “We hope to be able to solve this mystery. How a million stars can form in such a small region is also a mystery.”

The cluster has one billion times the luminosity of our sun, but is invisible in ordinary light. Turner’s team detected the cluster using infrared and radio observations. The astronomers detected the radio emission of the object in 1996, but needed the new infrared analyses to exclude possibilities other than the star cluster, and to see that the gases are trapped by gravity, Turner said.

Turner and her colleagues — Sara Beck, astronomy professor at Tel Aviv University’s School of Physics and Astronomy in Israel; former UCLA astronomy graduate students Lucian Crosthwaite and David Meier; James Larkin, assistant professor of physics and astronomy at UCLA; and Ian McLean, professor of astronomy at UCLA — analyzed infrared hydrogen spectra from NGC 5253, a galaxy that contains hundreds of large star clusters.

Turner and her colleagues will look for other examples of young star clusters, and hope to learn more about star formation within this cluster, using infrared and radio emissions.

“We haven’t observed this type of start formation before,” Turner said. “This globular cluster is invisible to ultraviolet telescopes, and could remain invisible for most of its star-forming lifetime.”

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>