Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New results force scientists to rethink single-molecule wires

30.05.2003


Single-molecule switches have the potential to shrink computing circuits dramatically, but new results from the Arizona State University lab that first described how to wire a single molecule between gold contacts now show that laboratory-standard wired molecules have an unavoidable tendency to "blink" randomly.



In the May 30, 2003, Science, Stuart Lindsay and colleagues identify the cause of this blinking behavior as random, temporary breaks in the chemical bond between the wired molecule and the gold contacts, making this particular wired-molecule arrangement unsuitable for electronic circuits. The National Science Foundation, the federal government agency responsible for supporting all areas of science and engineering, supported the research.

"There is a substantial interest in building single-molecule switches for molecular computing," said Lindsay, a professor of biophysics. "The observation from scanning tunneling microscopes is that these wired molecules ’blink’ on and off. It was assumed that this was due to some property of the molecules, and if that behavior could be controlled, they could be used as molecular switches." The various molecules examined typically blink once every 30 seconds to four minutes.


The research team includes Arizona State postdoctoral researchers Ganesh Ramachandran and Alex Primak, and researchers Theresa Hopson, Adam Rawlett and Larry Nagahara from Motorola Labs’ Physical Sciences Research Laboratories.

In 2001, Lindsay’s research group was the first to perfect a technique that allowed long, thin molecules capped at both ends with sulfur atoms to be wired individually to a gold electrode. Since then, researchers have studied the behavior and properties of various exotic molecules, almost all wired via sulfur atoms to gold electrodes using the Lindsay group’s procedure.

To isolate the cause of the blinking, Lindsay’s team compared the wired behavior of a more complex molecule to that of extremely simple molecules. While various explanations for the blinking had been proposed for complex molecules, none could possibly apply to the simpler molecules. Yet Lindsay’s team saw the blinking in all cases.

"We were left with two possibilities," Lindsay said. "Either the molecule itself or the contact was switching. The conclusion we had to reach was that the lower contact was coming apart."

However, that conclusion runs contrary to some basic chemistry: sulfur-gold bonds simply do not break at room temperature or even at temperatures as high as 60 degrees Celsius (140 degrees Fahrenheit).

Lindsay’s team explains the apparent contradiction with some equally basic chemistry. While the sulfur-gold bonds don’t break permanently, the bonds are unstable and will break temporarily and then re-connect. In fact, a chemical process called "annealing"--commonly used to harden metals and also in the procedure to prepare the gold electrodes to accept wired molecules--relies on the unstable bonds coming apart. The team reports that, as expected, the blinking becomes more frequent when the wired molecules are heated to annealing temperatures.

The blinking, in other words, is not a controllable behavior of the molecules. The on-and-off blinking happens naturally and randomly at the sulfur contact between the molecule and the gold electrodes.

"This doesn’t help anyone build better computing devices, but neither does it mean that single-molecule wires are useless," Lindsay said. "It’s just not as naïve as it first seemed. The gold surface is not the best electrode material, but there are other options."

David Hard | EurekAlert!
Further information:
http://www.nsf.gov/
http://green.la.asu.edu/.

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>