Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New results force scientists to rethink single-molecule wires

30.05.2003


Single-molecule switches have the potential to shrink computing circuits dramatically, but new results from the Arizona State University lab that first described how to wire a single molecule between gold contacts now show that laboratory-standard wired molecules have an unavoidable tendency to "blink" randomly.



In the May 30, 2003, Science, Stuart Lindsay and colleagues identify the cause of this blinking behavior as random, temporary breaks in the chemical bond between the wired molecule and the gold contacts, making this particular wired-molecule arrangement unsuitable for electronic circuits. The National Science Foundation, the federal government agency responsible for supporting all areas of science and engineering, supported the research.

"There is a substantial interest in building single-molecule switches for molecular computing," said Lindsay, a professor of biophysics. "The observation from scanning tunneling microscopes is that these wired molecules ’blink’ on and off. It was assumed that this was due to some property of the molecules, and if that behavior could be controlled, they could be used as molecular switches." The various molecules examined typically blink once every 30 seconds to four minutes.


The research team includes Arizona State postdoctoral researchers Ganesh Ramachandran and Alex Primak, and researchers Theresa Hopson, Adam Rawlett and Larry Nagahara from Motorola Labs’ Physical Sciences Research Laboratories.

In 2001, Lindsay’s research group was the first to perfect a technique that allowed long, thin molecules capped at both ends with sulfur atoms to be wired individually to a gold electrode. Since then, researchers have studied the behavior and properties of various exotic molecules, almost all wired via sulfur atoms to gold electrodes using the Lindsay group’s procedure.

To isolate the cause of the blinking, Lindsay’s team compared the wired behavior of a more complex molecule to that of extremely simple molecules. While various explanations for the blinking had been proposed for complex molecules, none could possibly apply to the simpler molecules. Yet Lindsay’s team saw the blinking in all cases.

"We were left with two possibilities," Lindsay said. "Either the molecule itself or the contact was switching. The conclusion we had to reach was that the lower contact was coming apart."

However, that conclusion runs contrary to some basic chemistry: sulfur-gold bonds simply do not break at room temperature or even at temperatures as high as 60 degrees Celsius (140 degrees Fahrenheit).

Lindsay’s team explains the apparent contradiction with some equally basic chemistry. While the sulfur-gold bonds don’t break permanently, the bonds are unstable and will break temporarily and then re-connect. In fact, a chemical process called "annealing"--commonly used to harden metals and also in the procedure to prepare the gold electrodes to accept wired molecules--relies on the unstable bonds coming apart. The team reports that, as expected, the blinking becomes more frequent when the wired molecules are heated to annealing temperatures.

The blinking, in other words, is not a controllable behavior of the molecules. The on-and-off blinking happens naturally and randomly at the sulfur contact between the molecule and the gold electrodes.

"This doesn’t help anyone build better computing devices, but neither does it mean that single-molecule wires are useless," Lindsay said. "It’s just not as naïve as it first seemed. The gold surface is not the best electrode material, but there are other options."

David Hard | EurekAlert!
Further information:
http://www.nsf.gov/
http://green.la.asu.edu/.

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>