Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T Study Looks Inside ’beating Heart’ Of Lasers

28.05.2003


A new study by University of Toronto researchers offers the first-ever glimpse inside a laser while it’s operating, a breakthrough that could lead to more powerful and efficient lasers for fibre-optic communication systems.



“We’ve seen the inner workings of a laser in action,” says investigator Ted Sargent, a professor in the Edward S. Rogers Sr. Department of Electrical and Computer Engineering. “We’ve produced a topographical map of the landscape that electrons see as they flow into these lasers to produce light.” He says the findings could influence laser design, change the diagnosis of faulty lasers and potentially reduce manufacturing costs. The study, which will appear in the June 9 issue of the journal Applied Physics Letters, offers direct experimental insight into how lasers function, says Sargent, who holds the Nortel Networks-Canada Research Chair in Emerging Technologies.

Lasers are created by growing a complex and carefully designed series of nanometer-sized layers of crystals on a disk of semiconductor material known as a wafer, Sargent explains. Ridges are etched into the crystal surface to guide laser light, thin metal layers are added on top and bottom and the wafer is then cut into tiny cubes or chips. During the laser’s operation, an electrical current flows into the chip, providing the energy to generate intense light at a specific wavelength used in fibre-optic communications.


In their study, researchers focused on the “beating heart” portion of the laser (called the active region), where electronic energy is converted into light. Using a technique called scanning voltage microscopy, they examined the surface of an operating laser, picking up differences in voltage. These differences translate to a topographical image of the laser’s energy surface, allowing researchers to visualize the forces an electron experiences along its path into the active region, Sargent says.

The team used its newly acquired information about the inside operations of the laser to determine the fraction of electric current that contributed to producing light. The balance of electrons are undesirably diverted from the active region: such current leakage wastes electrons and heats the device up, degrading performance.

“We used direct imaging to resolve a contentious issue in the field: the effectiveness of electronic funnelling into the active region of a ridge-waveguide laser,” says Dayan Ban, the U of T doctoral candidate who made the measurements. “Previously, uncorroborated models had fueled speculation by yielding divergent results. Now we know where the electrons go.” Ban is now a researcher at the Institute for Microstructural Sciences of the National Research Council of Canada.

“Direct imaging of the functions that drive the action of a living laser could transform how we think about laser ‘diagnosis and therapy,’” says Sargent, referring to the measurement and optimization of laser structures and their determination of the devices’ inner workings. Currently, designers use a variety of computer simulations to model how lasers work, but the U of T research may determine which simulations are the most accurate design tools. “With accurate models,” says Sargent, “the designs we can create are more likely to result in devices that meet design requirements.”

Co-investigator St. John Dixon-Warren, a physical chemist from Bookham Technology, a U.K.-based optical components manufacturer located in Kanata, Ont., says their research could also help in diagnosing faulty lasers. “If a particular laser fails,” says Dixon-Warren, “the kind of measurements that we are taking could provide some idea of why it failed and the design could then be modified.”

Sargent says the findings could have larger implications for the creation of optical circuits for fibre-optic communication. “If we could fully develop these models and fully understand how lasers work, then we could start to build optical circuits with confidence and high probability of success,” he says. “Optical chips akin to electronic integrated circuits in computers must be founded on a deep and broad understanding of the processes at work inside current and future generations of lasers.”

The research was supported by Nortel Networks Optical Components (recently acquired by Bookham Technology), the Natural Sciences and Engineering Research Council of Canada, the Ontario Research and Development Challenge Fund, the Canada Foundation for Innovation, the Ontario Innovation Trust and the Canada Research Chairs Program.

CONTACT:
Ted Sargent
Edward S. Rogers Sr. Department of Electrical and Computer Engineering
416-946-5051
ted.sargent@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>