Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T Study Looks Inside ’beating Heart’ Of Lasers

28.05.2003


A new study by University of Toronto researchers offers the first-ever glimpse inside a laser while it’s operating, a breakthrough that could lead to more powerful and efficient lasers for fibre-optic communication systems.



“We’ve seen the inner workings of a laser in action,” says investigator Ted Sargent, a professor in the Edward S. Rogers Sr. Department of Electrical and Computer Engineering. “We’ve produced a topographical map of the landscape that electrons see as they flow into these lasers to produce light.” He says the findings could influence laser design, change the diagnosis of faulty lasers and potentially reduce manufacturing costs. The study, which will appear in the June 9 issue of the journal Applied Physics Letters, offers direct experimental insight into how lasers function, says Sargent, who holds the Nortel Networks-Canada Research Chair in Emerging Technologies.

Lasers are created by growing a complex and carefully designed series of nanometer-sized layers of crystals on a disk of semiconductor material known as a wafer, Sargent explains. Ridges are etched into the crystal surface to guide laser light, thin metal layers are added on top and bottom and the wafer is then cut into tiny cubes or chips. During the laser’s operation, an electrical current flows into the chip, providing the energy to generate intense light at a specific wavelength used in fibre-optic communications.


In their study, researchers focused on the “beating heart” portion of the laser (called the active region), where electronic energy is converted into light. Using a technique called scanning voltage microscopy, they examined the surface of an operating laser, picking up differences in voltage. These differences translate to a topographical image of the laser’s energy surface, allowing researchers to visualize the forces an electron experiences along its path into the active region, Sargent says.

The team used its newly acquired information about the inside operations of the laser to determine the fraction of electric current that contributed to producing light. The balance of electrons are undesirably diverted from the active region: such current leakage wastes electrons and heats the device up, degrading performance.

“We used direct imaging to resolve a contentious issue in the field: the effectiveness of electronic funnelling into the active region of a ridge-waveguide laser,” says Dayan Ban, the U of T doctoral candidate who made the measurements. “Previously, uncorroborated models had fueled speculation by yielding divergent results. Now we know where the electrons go.” Ban is now a researcher at the Institute for Microstructural Sciences of the National Research Council of Canada.

“Direct imaging of the functions that drive the action of a living laser could transform how we think about laser ‘diagnosis and therapy,’” says Sargent, referring to the measurement and optimization of laser structures and their determination of the devices’ inner workings. Currently, designers use a variety of computer simulations to model how lasers work, but the U of T research may determine which simulations are the most accurate design tools. “With accurate models,” says Sargent, “the designs we can create are more likely to result in devices that meet design requirements.”

Co-investigator St. John Dixon-Warren, a physical chemist from Bookham Technology, a U.K.-based optical components manufacturer located in Kanata, Ont., says their research could also help in diagnosing faulty lasers. “If a particular laser fails,” says Dixon-Warren, “the kind of measurements that we are taking could provide some idea of why it failed and the design could then be modified.”

Sargent says the findings could have larger implications for the creation of optical circuits for fibre-optic communication. “If we could fully develop these models and fully understand how lasers work, then we could start to build optical circuits with confidence and high probability of success,” he says. “Optical chips akin to electronic integrated circuits in computers must be founded on a deep and broad understanding of the processes at work inside current and future generations of lasers.”

The research was supported by Nortel Networks Optical Components (recently acquired by Bookham Technology), the Natural Sciences and Engineering Research Council of Canada, the Ontario Research and Development Challenge Fund, the Canada Foundation for Innovation, the Ontario Innovation Trust and the Canada Research Chairs Program.

CONTACT:
Ted Sargent
Edward S. Rogers Sr. Department of Electrical and Computer Engineering
416-946-5051
ted.sargent@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>