Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T Study Looks Inside ’beating Heart’ Of Lasers

28.05.2003


A new study by University of Toronto researchers offers the first-ever glimpse inside a laser while it’s operating, a breakthrough that could lead to more powerful and efficient lasers for fibre-optic communication systems.



“We’ve seen the inner workings of a laser in action,” says investigator Ted Sargent, a professor in the Edward S. Rogers Sr. Department of Electrical and Computer Engineering. “We’ve produced a topographical map of the landscape that electrons see as they flow into these lasers to produce light.” He says the findings could influence laser design, change the diagnosis of faulty lasers and potentially reduce manufacturing costs. The study, which will appear in the June 9 issue of the journal Applied Physics Letters, offers direct experimental insight into how lasers function, says Sargent, who holds the Nortel Networks-Canada Research Chair in Emerging Technologies.

Lasers are created by growing a complex and carefully designed series of nanometer-sized layers of crystals on a disk of semiconductor material known as a wafer, Sargent explains. Ridges are etched into the crystal surface to guide laser light, thin metal layers are added on top and bottom and the wafer is then cut into tiny cubes or chips. During the laser’s operation, an electrical current flows into the chip, providing the energy to generate intense light at a specific wavelength used in fibre-optic communications.


In their study, researchers focused on the “beating heart” portion of the laser (called the active region), where electronic energy is converted into light. Using a technique called scanning voltage microscopy, they examined the surface of an operating laser, picking up differences in voltage. These differences translate to a topographical image of the laser’s energy surface, allowing researchers to visualize the forces an electron experiences along its path into the active region, Sargent says.

The team used its newly acquired information about the inside operations of the laser to determine the fraction of electric current that contributed to producing light. The balance of electrons are undesirably diverted from the active region: such current leakage wastes electrons and heats the device up, degrading performance.

“We used direct imaging to resolve a contentious issue in the field: the effectiveness of electronic funnelling into the active region of a ridge-waveguide laser,” says Dayan Ban, the U of T doctoral candidate who made the measurements. “Previously, uncorroborated models had fueled speculation by yielding divergent results. Now we know where the electrons go.” Ban is now a researcher at the Institute for Microstructural Sciences of the National Research Council of Canada.

“Direct imaging of the functions that drive the action of a living laser could transform how we think about laser ‘diagnosis and therapy,’” says Sargent, referring to the measurement and optimization of laser structures and their determination of the devices’ inner workings. Currently, designers use a variety of computer simulations to model how lasers work, but the U of T research may determine which simulations are the most accurate design tools. “With accurate models,” says Sargent, “the designs we can create are more likely to result in devices that meet design requirements.”

Co-investigator St. John Dixon-Warren, a physical chemist from Bookham Technology, a U.K.-based optical components manufacturer located in Kanata, Ont., says their research could also help in diagnosing faulty lasers. “If a particular laser fails,” says Dixon-Warren, “the kind of measurements that we are taking could provide some idea of why it failed and the design could then be modified.”

Sargent says the findings could have larger implications for the creation of optical circuits for fibre-optic communication. “If we could fully develop these models and fully understand how lasers work, then we could start to build optical circuits with confidence and high probability of success,” he says. “Optical chips akin to electronic integrated circuits in computers must be founded on a deep and broad understanding of the processes at work inside current and future generations of lasers.”

The research was supported by Nortel Networks Optical Components (recently acquired by Bookham Technology), the Natural Sciences and Engineering Research Council of Canada, the Ontario Research and Development Challenge Fund, the Canada Foundation for Innovation, the Ontario Innovation Trust and the Canada Research Chairs Program.

CONTACT:
Ted Sargent
Edward S. Rogers Sr. Department of Electrical and Computer Engineering
416-946-5051
ted.sargent@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>