Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot gas around cold dust cloud surprises astronomers

28.05.2003


New features may make southern sky’s ’Coalsack’ ideal for further study



Stargazers call a prominent dark black region in the Southern Hemisphere’s night sky the Coalsack. Even for naked-eye observers, the cloud of cold gas that makes up the Coalsack is hard to miss: It covers a part of the misty luminescence of the Milky Way, blocking out distant stars of our galaxy with the deep black shades that have earned the Coalsack its name.

A newly discovered aspect of the Coalsack may soon have astronomers thinking of it more like a treasure chest. At an American Astronomical Society Meeting in Nashville this week, astronomers will reveal evidence that the Coalsack has hot gases on its perimeter, a finding that means the Coalsack will likely provide many outstanding opportunities to learn more about interactions between regions of hot and cold gas, processes that are essential to star formation and distribution of the elements that make up life forms and the planets. Findings from the Coalsack may also help scientists refine their models of energy production in the galaxy.


“Every once in a while, nature gives us a break and sets things up so that we can study the key processes fairly easily,” says B-G Andersson, associate research scientist in physics and astronomy in the Krieger School of Arts and Sciences at Johns Hopkins and lead author of the AAS presentation. “For astronomers, this is a bit like finding a living dodo – instead of trying to make inferences about how the dodo walks, which is what we normally have to do, we can get direct, detailed observations of it walking.”

The Coalsack is relatively nearby in cosmological terms, about 650 light years away in the same spiral arm of the Milky Way as Earth. Because it is close by, structures in the Coalsack can be studied in great detail. It’s also nicely backlit from Earth’s point of view by bright stars in the next arm of the Milky Way, allowing scientists to use spectroscopy to acquire a fairly comprehensive sense of the chemical ingredients of the cloud.

The hot gas on the perimeter may indicate that the Coalsack is contained within a region of active massive star formation and supernovae known as the Upper Centaurus-Lupus super-bubble. This region has produced large hot stars that burn out quickly and die explosively, sometimes heating interstellar gas to high temperatures. Naked-eye observers can still see the darkness of the cold gas in the Coalsack because most of the surrounding hot gas is too warm to emit light in the visible portion of the electromagnetic spectrum.

Andersson and coauthors David Knauth and Robin Shelton of Johns Hopkins, S.L. Snowden of Goddard Space Flight Center and Peter Wannier of the Jet Propulsion Laboratory built the case for their finding with data taken by the orbiting Far Ultraviolet Spectroscopic Explorer (FUSE) and Roentgen Satellite (ROSAT) observatories. The authors had been using FUSE to study how cold gas clouds dissipate at their edges when their observations of the Coalsack came back with signs of oxygen VI , oxygen atoms with five of their eight surrounding electrons stripped away.

Astronomers know that considerable energy is required to knock that many electrons off an oxygen atom, and as a result have long interpreted the presence of oxygen VI as a sign that very hot gases are entering a cooling process. How this cooling process occurs – through turbulent mixing of the gas with colder gas clouds or through conduction of electrons – is a topic of debate among astronomers that further study of the Coalsack may help resolve.

Tipped off by the FUSE readings, Andersson and his colleagues analyzed X-ray data from ROSAT, which surveyed X-ray emissions from the entire sky, and found that the perimeter of the Coalsack, particularly its southeast edge, lights up in X-rays – another sign of the hot gas cloud. Through further analysis, they were able to show that the two readings appeared to be coming from the same region around the Coalsack.

“If our model of the Coalsack is right, then you can use it to test various theories of oxygen VI generation, and this may help us better understand what are the mechanisms behind previously detected oxygen VI production in many more distant parts of the galaxy,” Andersson comments. “This could tell us something about energy production in the galaxy, and that could in turn tell us more about star formation.”

Andersson noted that astronomers have been studying the Coalsack since the early 19th century, and plenty of good data on many features of the cloud are already available.

“This is starting to look like a really good laboratory for conducting these kinds of experiments,” he said. “There are certainly other cases where oxygen VI has likely been associated with a cloud, but never before have we had such a nearby cloud with a reliable distance determination or as many background stars behind the cloud to allow us to look at absorption readings.”


This research was supported by NASA.

Michael Purdy | EurekAlert!
Further information:
http://www.jhu.edu/

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>