Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot gas around cold dust cloud surprises astronomers

28.05.2003


New features may make southern sky’s ’Coalsack’ ideal for further study



Stargazers call a prominent dark black region in the Southern Hemisphere’s night sky the Coalsack. Even for naked-eye observers, the cloud of cold gas that makes up the Coalsack is hard to miss: It covers a part of the misty luminescence of the Milky Way, blocking out distant stars of our galaxy with the deep black shades that have earned the Coalsack its name.

A newly discovered aspect of the Coalsack may soon have astronomers thinking of it more like a treasure chest. At an American Astronomical Society Meeting in Nashville this week, astronomers will reveal evidence that the Coalsack has hot gases on its perimeter, a finding that means the Coalsack will likely provide many outstanding opportunities to learn more about interactions between regions of hot and cold gas, processes that are essential to star formation and distribution of the elements that make up life forms and the planets. Findings from the Coalsack may also help scientists refine their models of energy production in the galaxy.


“Every once in a while, nature gives us a break and sets things up so that we can study the key processes fairly easily,” says B-G Andersson, associate research scientist in physics and astronomy in the Krieger School of Arts and Sciences at Johns Hopkins and lead author of the AAS presentation. “For astronomers, this is a bit like finding a living dodo – instead of trying to make inferences about how the dodo walks, which is what we normally have to do, we can get direct, detailed observations of it walking.”

The Coalsack is relatively nearby in cosmological terms, about 650 light years away in the same spiral arm of the Milky Way as Earth. Because it is close by, structures in the Coalsack can be studied in great detail. It’s also nicely backlit from Earth’s point of view by bright stars in the next arm of the Milky Way, allowing scientists to use spectroscopy to acquire a fairly comprehensive sense of the chemical ingredients of the cloud.

The hot gas on the perimeter may indicate that the Coalsack is contained within a region of active massive star formation and supernovae known as the Upper Centaurus-Lupus super-bubble. This region has produced large hot stars that burn out quickly and die explosively, sometimes heating interstellar gas to high temperatures. Naked-eye observers can still see the darkness of the cold gas in the Coalsack because most of the surrounding hot gas is too warm to emit light in the visible portion of the electromagnetic spectrum.

Andersson and coauthors David Knauth and Robin Shelton of Johns Hopkins, S.L. Snowden of Goddard Space Flight Center and Peter Wannier of the Jet Propulsion Laboratory built the case for their finding with data taken by the orbiting Far Ultraviolet Spectroscopic Explorer (FUSE) and Roentgen Satellite (ROSAT) observatories. The authors had been using FUSE to study how cold gas clouds dissipate at their edges when their observations of the Coalsack came back with signs of oxygen VI , oxygen atoms with five of their eight surrounding electrons stripped away.

Astronomers know that considerable energy is required to knock that many electrons off an oxygen atom, and as a result have long interpreted the presence of oxygen VI as a sign that very hot gases are entering a cooling process. How this cooling process occurs – through turbulent mixing of the gas with colder gas clouds or through conduction of electrons – is a topic of debate among astronomers that further study of the Coalsack may help resolve.

Tipped off by the FUSE readings, Andersson and his colleagues analyzed X-ray data from ROSAT, which surveyed X-ray emissions from the entire sky, and found that the perimeter of the Coalsack, particularly its southeast edge, lights up in X-rays – another sign of the hot gas cloud. Through further analysis, they were able to show that the two readings appeared to be coming from the same region around the Coalsack.

“If our model of the Coalsack is right, then you can use it to test various theories of oxygen VI generation, and this may help us better understand what are the mechanisms behind previously detected oxygen VI production in many more distant parts of the galaxy,” Andersson comments. “This could tell us something about energy production in the galaxy, and that could in turn tell us more about star formation.”

Andersson noted that astronomers have been studying the Coalsack since the early 19th century, and plenty of good data on many features of the cloud are already available.

“This is starting to look like a really good laboratory for conducting these kinds of experiments,” he said. “There are certainly other cases where oxygen VI has likely been associated with a cloud, but never before have we had such a nearby cloud with a reliable distance determination or as many background stars behind the cloud to allow us to look at absorption readings.”


This research was supported by NASA.

Michael Purdy | EurekAlert!
Further information:
http://www.jhu.edu/

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>