Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists measure individual electrons in real time

22.05.2003


Ultracold experiment opens door for basic studies in quantum computing


A ring-shaped electric field runs round the tips of the five (light-colored) gold wires, creating a central island where some 80 electrons are isolated from electrons in the rest of the structure.



Physicists at Rice University have completed the first real-time measurement of individual electrons, creating an experimental method that for the first time allows scientists to probe the dynamic interactions between the smallest atomic particles.

The research, which appears in the May 22 issue of the journal Nature, is important for researchers developing quantum computers, a revolutionary type of computer that is orders of magnitude more powerful than any computer ever built.


To date, computers have used the binary bit -- represented by either a one or zero -- as their fundamental unit of information. In a quantum computer, the fundamental unit is a quantum bit, or qubit. Because qubits can have more than two states, calculations that would take a supercomputer years to finish will take a quantum computer mere seconds.

Due to the complexities of quantum dynamics, electrons can serve as qubits. They can exist in "up" and "down" states -- single points that are analogous to the ones and zeroes in classical computers -- or in "superposition" states, which are not single points but patterns of probability that exist in several places at once.

The Rice experiments took place in an ultracold chamber chilled to temperatures below those found in deep space. There, for the first time, scientists were able to observe individual electrons as they moved onto and off of a nanoscopic piece of a semiconductor known as a quantum dot.

"Since no one has measured single electron dynamics before, the door is wide open for new investigations," said lead researcher Alex Rimberg, assistant professor of physics and astronomy and of electrical and computer engineering. "These include studies of the interactions between individual electrons, as well as the quantum phenomena that engineers must understand if they ever want to build a working quantum computer."

Rimberg’s group, which includes graduate students Wei Lu and Zhongqing Ji, built its quantum dot using an ultra-thin layer of semiconducting gallium arsenide. Using gold wiring, they created a ring-shaped electrostatic field, isolating a small pool of electrons on a 300-nanometer piece of gallium arsenide inside the ring. An extremely sensitive charge-sensing device called a radio-frequency single-electron transistor (RF-SET) was placed next to the pool. Operating in a fashion akin to an AM radio, the RF-SET registered changes in the amplitude modulation of radio waves reflected by the pool. The modulations changed as electrons entered and left the pool.

"We were able to tune this system so that our pool was equally happy with, say, 79 or 80 electrons," said Rimberg. "By raising the power of the electric field, we raised the barrier around the pool, making it very difficult for electrons to enter or leave the pool. That allowed us to slow down the electron motion enough to measure the coming and going of individual electrons."

Though physicists have used SET technology to measure the movement of single electrons for several years, the response time in previous experiments was about 1,000 times slower. Rimberg likened the difference to a system that could detect commuters moving in and out of Grand Central Station.

"Before, you could say that individual people were coming and going from the station, and you knew the average number of people in the station, but each measurement took several minutes, so you could never say precisely when a particular individual arrived or left," said Rimberg.

Like commuters jockeying for position on a railway platform, electrons also interact with one another in close proximity. Rimberg hopes physicists can use the ultracold RF-SET system to test competing theories that explain how electrons influence each another.


The research was sponsored by the National Science Foundation, the Army Research Office and the Robert A. Welch Foundation.


Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>