Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists measure individual electrons in real time


Ultracold experiment opens door for basic studies in quantum computing

A ring-shaped electric field runs round the tips of the five (light-colored) gold wires, creating a central island where some 80 electrons are isolated from electrons in the rest of the structure.

Physicists at Rice University have completed the first real-time measurement of individual electrons, creating an experimental method that for the first time allows scientists to probe the dynamic interactions between the smallest atomic particles.

The research, which appears in the May 22 issue of the journal Nature, is important for researchers developing quantum computers, a revolutionary type of computer that is orders of magnitude more powerful than any computer ever built.

To date, computers have used the binary bit -- represented by either a one or zero -- as their fundamental unit of information. In a quantum computer, the fundamental unit is a quantum bit, or qubit. Because qubits can have more than two states, calculations that would take a supercomputer years to finish will take a quantum computer mere seconds.

Due to the complexities of quantum dynamics, electrons can serve as qubits. They can exist in "up" and "down" states -- single points that are analogous to the ones and zeroes in classical computers -- or in "superposition" states, which are not single points but patterns of probability that exist in several places at once.

The Rice experiments took place in an ultracold chamber chilled to temperatures below those found in deep space. There, for the first time, scientists were able to observe individual electrons as they moved onto and off of a nanoscopic piece of a semiconductor known as a quantum dot.

"Since no one has measured single electron dynamics before, the door is wide open for new investigations," said lead researcher Alex Rimberg, assistant professor of physics and astronomy and of electrical and computer engineering. "These include studies of the interactions between individual electrons, as well as the quantum phenomena that engineers must understand if they ever want to build a working quantum computer."

Rimberg’s group, which includes graduate students Wei Lu and Zhongqing Ji, built its quantum dot using an ultra-thin layer of semiconducting gallium arsenide. Using gold wiring, they created a ring-shaped electrostatic field, isolating a small pool of electrons on a 300-nanometer piece of gallium arsenide inside the ring. An extremely sensitive charge-sensing device called a radio-frequency single-electron transistor (RF-SET) was placed next to the pool. Operating in a fashion akin to an AM radio, the RF-SET registered changes in the amplitude modulation of radio waves reflected by the pool. The modulations changed as electrons entered and left the pool.

"We were able to tune this system so that our pool was equally happy with, say, 79 or 80 electrons," said Rimberg. "By raising the power of the electric field, we raised the barrier around the pool, making it very difficult for electrons to enter or leave the pool. That allowed us to slow down the electron motion enough to measure the coming and going of individual electrons."

Though physicists have used SET technology to measure the movement of single electrons for several years, the response time in previous experiments was about 1,000 times slower. Rimberg likened the difference to a system that could detect commuters moving in and out of Grand Central Station.

"Before, you could say that individual people were coming and going from the station, and you knew the average number of people in the station, but each measurement took several minutes, so you could never say precisely when a particular individual arrived or left," said Rimberg.

Like commuters jockeying for position on a railway platform, electrons also interact with one another in close proximity. Rimberg hopes physicists can use the ultracold RF-SET system to test competing theories that explain how electrons influence each another.

The research was sponsored by the National Science Foundation, the Army Research Office and the Robert A. Welch Foundation.

Jade Boyd | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>