Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Five Spacecraft Join to Solve an Auroral Puzzle

20.05.2003

Five spacecraft have made a remarkable set of observations, leading to a breakthrough in understanding the origin of a peculiar and puzzling type of aurora. Seen as bright spots in Earth’s atmosphere and called "dayside proton auroral spots," they are now known to occur when fractures appear in the Earth’s magnetic field, allowing particles emitted from the Sun to pass through and collide with molecules in our atmosphere.

On March 18, 2002, a jet of energetic solar protons collided with the Earth’s atmosphere and created a bright "spot" seen by NASA’s IMAGE spacecraft, just as the European Space Agency’s (ESA) four Cluster spacecraft passed overhead and straight through the proton jet. This is the first time that a precise and direct connection between the proton jet and bright spot has been made, and it results from the simultaneous observations by Cluster and IMAGE. The results of the study are published May 21 in Geophysical Research Letters, a journal of the American Geophysical Union, in a paper by Tai Phan of the University of California in Berkeley and 24 international colleagues.

Earth’s magnetic field acts as a shield, protecting the planet from the constant stream of tiny particles ejected by the Sun, known as the solar wind. The solar wind itself is a stream of hydrogen atoms, separated into their constituent protons and electrons. When electrons find routes into our atmosphere, they collide with and "excite" the atoms in the air. When these excited atoms release their energy, it is emitted as light, creating the glowing "curtains" we see as the aurora borealis in the far north and aurora australis in the far south. Dayside proton auroral spots are caused by protons "stealing" electrons from the atoms in our atmosphere.

An extensive analysis of the Cluster results has now shown that the region was experiencing a turbulent event known as "magnetic reconnection." Such a phenomenon takes place when the Earth’s usually impenetrable magnetic field fractures and has to find a new stable configuration. Until the field mends itself, solar protons leak through the gap and jet into Earth’s atmosphere, creating the dayside proton aurora.

Philippe Escoubet, ESA’s Cluster Project Scientist, comments, "Thanks to Cluster’s observations, scientists can directly and firmly link for the first time a dayside proton auroral spot and a magnetic reconnection event."

Tai Phan, leader of the investigation, now looks forward to a new way of studying the Earth’s protective shield. He says, "This result has opened up a new area of research. We can now watch dayside proton aurorae and use those observations to know where and how the cracks in the magnetic field are formed and how long the cracks remain open. That makes it a powerful tool to study the entry of the solar wind into the Earth’s magnetosphere."

Proton auroras were globally imaged for the first time by NASA’s IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) spacecraft, which revealed the presence of dayside proton auroral spots. ESA’s Cluster is a collection of four spacecraft, launched on two Russian rockets during the summer of 2000. They fly in formation around the Earth, relaying the most detailed information ever about how the solar wind affects the planet.

The principal investigators for the instruments in the current study were Henri Reme of CESR/Toulouse, France (Cluster Proton Detectors), Andre Balogh of Imperial College, London, United Kingdom (Cluster Magnetic Field Instrument), and Stephen Mende of University of California, Berkeley (IMAGE/FUV).

The current study was funded by NASA and other organizations.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Physics and Astronomy:

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>