Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Jersey Institute of Technology physicist uncovers new information about plutonium

09.05.2003


The storage of plutonium has long plagued scientists. “It is a dangerous metal and its long term storage must be done with special care so as not to harm the environment, ”said physicist Serguei Savrasov, Ph.D.



Finding a solution to this problem led Savrasov, an associate professor at New Jersey Institute of Technology (NJIT), and a team of researchers at Rutgers University and Los Alamos National Laboratories, to study how this metal reacts to heat, a natural condition of storage over time.

The team’s findings are published in the May 9, 2003 issue of Science.


Using a computer simulation, the researchers employed algorithms, to predict that when plutonium is heated, the volume of the plutonium lattice will change and the precise volume of the metal will collapse five percent. The simulation also predicted that heated plutonium deforms differently in various directions.

Other researchers working on the project were Xi Dai, Gabriel Kotliar and Elihu Abrahams, all of Rutgers University, and Albert Migliori and Hassel Ledbetter of Los Alamos National Laboratories, New Mexico. This simulation was the second part of an effort by this team. The April, 2001 issue of Nature reported the findings of several members of this group (S. Savrasov, G. Kotliar, and E. Abrahams). Their findings explored the anomalous expansion of plutonium.

Support for the project included a National Science Foundation Career Development Grant for $400,000, awarded to Savrasov, and a Department of Energy Division of Basic Energy Sciences grant for $300,000 awarded to Kotliar, Abrahams and Sasvrasov.

The new computer simulation by members of the same group plus others focused on why the metal shrinks. “There is an exciting and unusual interplay between the electrons and the plutonium lattice dynamic which is responsible for these unusual properties and why the volume collapses,” said Savrasov.

“It is important for the scientists to do the experiment as a simulation because plutonium is a toxic and radioactive element. It is dangerous for scientists to work with it directly,” added Savrasov.

The computer simulation showed the anisotropic elastic properties of plutonium. “Most metals are isotropic which means that the elastic properties are the same when you are stretching them,” Savrasov said. “But plutonium is anisotropic. When you stretch it in some directions, the metal is very soft. But when you pull it in other directions, it behaves like a typical metal, and is hard to stretch.”

The computer simulation done by the researchers modeled the properties of the plutonium lattice. “When you heat plutonium, it shows six structures and you can see it undergo these transitions,” said Savrasov.

The team modeled two of the six high temperature transitions. “When the plutonium is heated, it acts like popcorn in a microwave,” said Savrasov. “It pops up and increases 30 percent of its size and then after you heat it further, the metal collapses. This behavior is very unusual and unexpected for a metal.”

Savrasov said that such information hopefully will aid material scientists and engineers who are responsible for storing the metal. “Of course scientists know what they are doing, but our research helps them understand more about this metal’s basic properties,” Savrasov said.


Additional Contact:
Joseph Blumberg
Manager, Science Communications
Rutgers University
(732) 932-7084, x 652
blumberg@ur.rutgers.edu

Sheryl Weinstein | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>