Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-organization: the quest for the origin and evolution of structure

08.05.2003


Self-organization is a growing interdisciplinary field of research about a phenomenon that can be observed in the Universe, in nature and in social contexts. Researchers seek explanations by using both experimental, often computer-based approaches and empirical, observational approaches. Mechanisms of self-organization are beginning to be identified and the theoretical foundation is under development. Research on self-organization tries to describe and explain forms, complex patterns and behaviours that arise without an outside organizer. They arise under complex conditions away from equilibrium, on the edge of chaos. One common characteristic of the mechanisms that trigger and create self-organization are the use of simple rules for the emergence of complex processes.



A large part of the discussion during the symposium dealt with theories and methods in research on self-organization. Both experiments and empirical research are needed, but perhaps above all the development of a platform of knowledge from which it is possible to deal with the complexity that is also the precondition for self-organization. Reductionist approaches were deemed insufficient and a closer association between physics and biology was identified as a future strategy, since both these disciplines study relationships and characteristics in dynamic systems.

This is a summary of the June issue of Philosophical Transactions A. The 18 papers in this issue can be found on FirstCite, the Society’’s rapid online publication service at
http://www.catchword.com/rsl/1364503X/previews/contp1-1.htm



The symposium was organized around 17 specially invited lecturers, all world leaders in their fields, spanning from physics and cosmology to biochemistry, biology, physiology, mathematics and computer science. Also participating in the discussions were some 80 invited participants from many countries.

Tim Watson | alfa
Further information:
http://www.catchword.com/rsl/1364503X/previews/contp1-1.htm

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>