Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy recovery experiment could lead way to new accelerators

24.04.2003


Jefferson Lab physicists will soon begin their own version of reuse — not with run-of-the-mill materials, but with radiofrequency energy and the high-energy electrons that they energize.




Newspaper, glass and aluminum recycling has become commonplace for most households and businesses. Jefferson Lab physicists will soon begin their own version of reuse -- not with run-of-the-mill materials, but with radiofrequency energy and the high-energy electrons that they energize.

In an experiment slated to commence the third week of March, the Jefferson Lab accelerator, with slightly modified hardware, will go from "ordinary CEBAF accelerator" to "novel test bed" for recirculating linacs with energy recovery. Dave Douglas, an accelerator physicist with the Lab’s Center for the Advanced Studies of Accelerators (CASA), and Andrew Hutton, the Accelerator Division’s Director of Operations, first proposed this groundbreaking experiment, which was actively promoted and supported by the Accelerator Division and Lab management and was approved in July 2002 by the Program Advisory Committee. The experiment requires a new magnetic chicane but few
other changes to the accelerator.



The point of the experiment is to test a way to dramatically reduce RF (radiofrequency) energy usage, thus saving power or alternatively for the same power usage, producing brighter and higher intensity beams. Researchers believe that demonstration of this technology with multiple cavities at billion electron volt energies will provide valuable lessons for the future.

If the results are what scientists hope for, any advances could be applied to future energy-recovery linacs, or ERLs. Existing machines, like JLab’s Free-Electron Laser, or FEL, could benefit, as well as planned next-generation devices at national laboratories and universities, such as ion colliders and advanced light sources.

"RF power is quite expensive and limited; one can only feed so much power through a klystron into radio-frequency [energy]. Energy recovery is the centerpiece of a new operation mode for recirculating linacs, where the high energy beam returns its energy for further acceleration of a ’fresh’ batch of electrons," explains Alex Bogacz, a staff scientist with CASA and co-spokesman of the experiment. "The idea is not so new. Essentially we will be using the available RF power twice. Rather than throwing out a ’hot’ beam of high-energy electrons, we will extract its energy for further usage, then safely dump it at a low energy. One can cut power consumption by a large factor."

There are two phases involved in the March experiment’s 12-day run, involving proof-of-concept beam acceleration and deceleration at modest energies, in the range of several hundred million electron volts, or MeV (normally, the Lab’s accelerator operates in the six billion electron volt, or 6 GeV range). A third phase has been planned but not yet scheduled. During this final phase -- current doubling -- the energy recovery scheme combined with simultaneous "coasting" beam (no acceleration), will result in the effective beam current being doubled -- a very attractive proposition for next generation, high-brilliance light sources.

By March, the modest hardware changes to the accelerator will be made; technicians will have installed a chicane (series of four magnets) in the south linac (SL 22/23 region) designed to provide the slight phase delay as the beams circulate and recirculate, as well as the stands to accommodate them. A relatively small beam-extraction device, known as a "beam dump" is also being built, so that the electron beam can be "parked" and examined once each phase is complete. In addition, dedicated optics for beam transport, instrumentation and vacuum chambers (the pipe that carries the beam) are being readied.

None of the new components will impede or interfere with any previously installed equipment, and will remain in place once this energy-recycling study concludes.

During the experiment, JLab scientists will be making meticulous measurements of beam properties -- among them, energy, current, emittance (beam size) and "halo" (stray particles traveling with the beam) -- to insure their beam quality remains high. To that end, they will be monitoring the experiment’s dedicated optics to determine what, if any, factors degrade performance.

"The big question is how this will affect the quality of the beam," Bogacz says. "In principle, beam quality should be preserved and there should be no emittance dilution. That’s what we’ll be hoping to find when we take measurements of the beam that we extract at the beam dump."

In any case, if the March study pans out, Bogacz believes energy-recovery techniques may lead to an entirely new class of accelerators. "This is the next evolutionary step," he contends. "We’re trying to run smarter and use the accelerator’s innate capabilities. We think if we’re successful, this will be very useful for the next generation of light sources and precision colliders."

For more information regarding the Energy Recovery Experiment, visit the Center for Advanced Studies of Accelerators (CASA) website.

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>