Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superlubricant effect explained using new friction force sensor

11.04.2003


Graphite had already been extensively studied. German physicist Martin Dienwiebel was therefore extremely surprised when he discovered a completely new effect in this well-known lubricant. During research into the frictional properties of the material, he discovered that the frictional force almost completely disappeared at a certain moment.

Dienwiebel only intended to test the new friction force microscope he had developed. The Tribolever is a raster microscope which can measure frictional forces of just a few picoNewtons in three spatial dimensions. With his new instrument Dienwiebel first of all studied the frictional properties of graphite.

Graphite consists of carbon atoms arranged in layers one above another. The carbon atoms in a graphite layer form a sort of undulating landscape, which is similar to an egg box. The different layers can slide over each other. However, resistance can occur during the sliding process if the hills of one layer fit exactly into the valleys of another layer. Yet if the two layers are rotated with respect to each other, there are always points within the contact surface where the hills touch each other. As a result of this the two layers cannot collapse into each other and the resistance is overcome. The researcher has termed this phenomenon superlubrication.



A spray can with graphite lubricant is full of small graphite flakes. Upon spraying, these flakes land in a totally random manner. Consequently all of the flakes are automatically rotated with respect to each other and can therefore glide over each other with the minimum of resistance. The superlubricant effect discovered by Dienwiebell could be the basis of graphite’s outstanding lubricating qualities.

Graphite is not the only material for which the physicist wants to determine the frictional properties. As the properties of most materials change upon being exposed to air (for example, due to corrosion), Dienwiebel has also designed a friction force microscope that can work in an ultrahigh vacuum. The combination of this method with other microscopic techniques such as raster electron microscopy should make it possible to carry out a complete characterisation of friction in the future.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>