Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Superlubricant effect explained using new friction force sensor


Graphite had already been extensively studied. German physicist Martin Dienwiebel was therefore extremely surprised when he discovered a completely new effect in this well-known lubricant. During research into the frictional properties of the material, he discovered that the frictional force almost completely disappeared at a certain moment.

Dienwiebel only intended to test the new friction force microscope he had developed. The Tribolever is a raster microscope which can measure frictional forces of just a few picoNewtons in three spatial dimensions. With his new instrument Dienwiebel first of all studied the frictional properties of graphite.

Graphite consists of carbon atoms arranged in layers one above another. The carbon atoms in a graphite layer form a sort of undulating landscape, which is similar to an egg box. The different layers can slide over each other. However, resistance can occur during the sliding process if the hills of one layer fit exactly into the valleys of another layer. Yet if the two layers are rotated with respect to each other, there are always points within the contact surface where the hills touch each other. As a result of this the two layers cannot collapse into each other and the resistance is overcome. The researcher has termed this phenomenon superlubrication.

A spray can with graphite lubricant is full of small graphite flakes. Upon spraying, these flakes land in a totally random manner. Consequently all of the flakes are automatically rotated with respect to each other and can therefore glide over each other with the minimum of resistance. The superlubricant effect discovered by Dienwiebell could be the basis of graphite’s outstanding lubricating qualities.

Graphite is not the only material for which the physicist wants to determine the frictional properties. As the properties of most materials change upon being exposed to air (for example, due to corrosion), Dienwiebel has also designed a friction force microscope that can work in an ultrahigh vacuum. The combination of this method with other microscopic techniques such as raster electron microscopy should make it possible to carry out a complete characterisation of friction in the future.

Nalinie Moerlie | alfa
Further information:

More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>