Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superlubricant effect explained using new friction force sensor

11.04.2003


Graphite had already been extensively studied. German physicist Martin Dienwiebel was therefore extremely surprised when he discovered a completely new effect in this well-known lubricant. During research into the frictional properties of the material, he discovered that the frictional force almost completely disappeared at a certain moment.

Dienwiebel only intended to test the new friction force microscope he had developed. The Tribolever is a raster microscope which can measure frictional forces of just a few picoNewtons in three spatial dimensions. With his new instrument Dienwiebel first of all studied the frictional properties of graphite.

Graphite consists of carbon atoms arranged in layers one above another. The carbon atoms in a graphite layer form a sort of undulating landscape, which is similar to an egg box. The different layers can slide over each other. However, resistance can occur during the sliding process if the hills of one layer fit exactly into the valleys of another layer. Yet if the two layers are rotated with respect to each other, there are always points within the contact surface where the hills touch each other. As a result of this the two layers cannot collapse into each other and the resistance is overcome. The researcher has termed this phenomenon superlubrication.



A spray can with graphite lubricant is full of small graphite flakes. Upon spraying, these flakes land in a totally random manner. Consequently all of the flakes are automatically rotated with respect to each other and can therefore glide over each other with the minimum of resistance. The superlubricant effect discovered by Dienwiebell could be the basis of graphite’s outstanding lubricating qualities.

Graphite is not the only material for which the physicist wants to determine the frictional properties. As the properties of most materials change upon being exposed to air (for example, due to corrosion), Dienwiebel has also designed a friction force microscope that can work in an ultrahigh vacuum. The combination of this method with other microscopic techniques such as raster electron microscopy should make it possible to carry out a complete characterisation of friction in the future.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>