Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superlubricant effect explained using new friction force sensor

11.04.2003


Graphite had already been extensively studied. German physicist Martin Dienwiebel was therefore extremely surprised when he discovered a completely new effect in this well-known lubricant. During research into the frictional properties of the material, he discovered that the frictional force almost completely disappeared at a certain moment.

Dienwiebel only intended to test the new friction force microscope he had developed. The Tribolever is a raster microscope which can measure frictional forces of just a few picoNewtons in three spatial dimensions. With his new instrument Dienwiebel first of all studied the frictional properties of graphite.

Graphite consists of carbon atoms arranged in layers one above another. The carbon atoms in a graphite layer form a sort of undulating landscape, which is similar to an egg box. The different layers can slide over each other. However, resistance can occur during the sliding process if the hills of one layer fit exactly into the valleys of another layer. Yet if the two layers are rotated with respect to each other, there are always points within the contact surface where the hills touch each other. As a result of this the two layers cannot collapse into each other and the resistance is overcome. The researcher has termed this phenomenon superlubrication.



A spray can with graphite lubricant is full of small graphite flakes. Upon spraying, these flakes land in a totally random manner. Consequently all of the flakes are automatically rotated with respect to each other and can therefore glide over each other with the minimum of resistance. The superlubricant effect discovered by Dienwiebell could be the basis of graphite’s outstanding lubricating qualities.

Graphite is not the only material for which the physicist wants to determine the frictional properties. As the properties of most materials change upon being exposed to air (for example, due to corrosion), Dienwiebel has also designed a friction force microscope that can work in an ultrahigh vacuum. The combination of this method with other microscopic techniques such as raster electron microscopy should make it possible to carry out a complete characterisation of friction in the future.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>