Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Stretch Celestial ’Yardstick’ to New Lengths

11.04.2003


Flares of distant supernovae may reveal major changes in early evolution of universe


Astronomers used the Hubble Space Telescope to locate a distant supernova (highlighted by arrow in right image).
Photo courtesy NASA and John Blakeslee



Astronomers´ "yardstick" for measuring vast distances across the cosmos grew longer today as scientists at The Johns Hopkins University announced they had identified and closely analyzed two distant new instances of a kind of exploding star known as a Type Ia supernova.

The new supernovae belong to a group of star types known as "standard candles" that astronomers prize for their usefulness in gauging cosmic distances. They are approximately 4.7 and 7.6 billion light years from Earth, and are found in the constellation Ursa Major, which contains the Big Dipper.


According to Johns Hopkins astronomers, the supernovae they discovered will be just the first of many to be identified with a new camera in the orbiting Hubble Space Telescope, the Advanced Camera for Surveys (ACS). That prospect has them excited about filling a prominent hole in their knowledge of the history of the universe.

"We’re trying to fill in a blank region where the universe’s rate of expansion switched from decelerating due to gravity to accelerating growth driven by dark energy," explains John Blakeslee, an associate ACS research scientist at Johns Hopkins and lead author of a new paper due out in the June Astrophysical Journal. "That’s a real challenge, but the ACS is making it very straightforward to find distant supernovae and get detailed information about them."

Blakeslee and coauthor Holland Ford, professor of physics and astronomy at Johns Hopkins, noted that astronomers have previously identified more distant supernovae, but do not have the same level of detailed information on those supernovae.

"We have enough data on the new supernovae to constrain both their distance and the amount of dust obscuration," Blakeslee said.

Dust obscuration is important to distance measurements because astronomer’s system of "standard candles" contrasts the inherent brightness of a star or nova with its apparent brightness from Earth.

"If you measure the brightness of a candle, and then move the candle away from you and measure its brightness again, the candle will appear four times fainter every time the distance is doubled," explains Ford.

Astronomers use their detailed models of star formation, development, and death to predict how bright certain stars should be at various points in their life cycle, and then compare that with their apparent brightness to get a better feel for how far away the stars are. The first such "standard candle," identified early in the 20th century, was a type of star known as a Cepheid variable. Astronomers linked the amount of time it took for a Cepheid to go through its cycle of varying brightness to its actual brightness.

Type Ia supernovae are white dwarf stars that have been drawing mass from a companion star. The white dwarf siphons off mass until it reaches a critical mass known as the Chandrasekahr limit.

"Hitting this limit causes a deflagration that consumes the star in about five seconds," Ford says. "A thermonuclear burning wave, burning oxygen and carbon and higher elements, goes through the star."

As a result, the star explodes and shines as brightly as several billion stars for several days, enabling astronomers to see it across huge gulfs. Blakeslee estimated that light from the most distant supernovae he and Ford detected with ACS had been traveling towards Earth since the universe was less than half its current age of 13 billion years old.

Astronomers Zlatan Tsvetanov of Johns Hopkins and Dan Magee of the University of California-Santa Cruz compared earlier Hubble images of the same patch of sky with new ACS images to initially identify the supernovae. Blakeslee led the follow-up observations with ACS and other Hubble instruments and the analysis that enabled them to get a detailed fix on the new supernovae’s intensity and their distance from Earth.

Information from studies of Type Ia supernovae confronted astronomers about five years ago with the stunning, unexpected revelation that stars and galaxies appeared to be moving away from each other at an ever- increasing rate in Earth’s cosmological neighborhood. They’ve attributed this accelerating expansion to a mysterious factor known as "dark energy" believed to permeate the universe.

Looking farther away into the universe (and, because of the distances involved, further into the past), they’ve seen evidence that gravity was at one point holding back the acceleration of the expansion of the universe. They have very little data, though, on the period of transition between these two phases, when the repulsion produced by dark energy surpassed the drag created by the pull of gravity.

"Continued studies of supernovae will allow us to uncover the full history of the universal expansion," Blakeslee says. "The sharper images, wider viewing area, and keener sensitivity of ACS should allow astronomers to discover roughly ten times as many of these cosmic beacons as was possible with Hubble previous main imaging camera."

Michael Purdy | Johns Hopkins University
Further information:
http://www.jhu.edu/news_info/news/home03/apr03/supernovae.html
http://hubble.stsci.edu/
http://acs.pha.jhu.edu/

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>