Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Skinny" galaxy harbors massive black hole at core

11.04.2003


Scientists have uncovered a supermassive black hole at the core of a svelte, spiral galaxy, a finding that questions a recently devised rule of thumb in which only galaxies with bulging cores have such black holes.


A photo of the spiral galaxy NGC 4395, taken with the Palomar 200-inch telescope. NGC 4395 is the least luminous and nearest Seyfert galaxy, located eight million light years away. Surprisingly, despite having a supermassive black hole at its core, it has no central bulge. (Credit: Allan Sandage/Carnegie Institution)



Dr. Alex Filippenko, professor of astronomy at the University of California, Berkeley, and Dr. Luis Ho, an astronomer at the Observatories of the Carnegie Institution of Washington, in Pasadena, discuss these results in the May 1 issue of The Astrophysical Journal Letters.

The scientists determined that galaxy NGC 4395, a flat "pure-disk" galaxy with no central bulge, has a central black hole approximately 10,000 to 100,000 times the mass of our sun. This suggests that other pure-disk galaxies, thought to be devoid of supermassive black holes, may indeed have one lurking within - quite possibly the featherweights of the supermassive black hole club.


"The supermassive black hole in NGC 4395 is the smallest one yet found in the center of a galaxy," said Filippenko. "This would be consistent with the galaxy having a small bulge. However, the bulge is not just small, it seems to be nonexistent."

Supermassive black holes typically range from millions to billions of times the mass of the sun, dwarfing the more common stellar black holes that are created by the runaway gravitational collapse of the cores of massive stars.

NGC 4395 is 11 million light years away in the Northern Hemisphere constellation of Canes Venatici ("the Hunting Dogs"). The galaxy has long been known to emit significant amounts of light, including visible light and X rays, from its central core region. This is a telltale sign of the presence of a central, giant black hole actively sucking in enough matter to create a swirling, superheated accretion disk. Yet, no supermassive black hole had been detected.

Filippenko and Ho used the Keck I 10-meter telescope on Mauna Kea in Hawaii and the Japanese-U.S. ASCA X ray telescope to determine that NGC 4395 indeed has a supermassive black hole, albeit an unusually light one.

"Here is an example of a massive black hole that is low in comparison to all previously reported supermassive ones, but it is definitely much more massive than stellar-class black holes, and is located in a galaxy that has no bulge," Ho said. "Thus, having a well-developed bulge is evidently not a necessary condition for the formation of massive, central black holes."

Filippenko and Ho confirmed the mass range using the velocity dispersion technique for estimating the mass of black holes, and in the process found that this powerful tool for inferring black hole mass works on scales far lower than previously thought.

Velocity dispersion refers to how fast, on average, the stars in a galactic core region are orbiting about the central black hole. It is akin to taking an average speed of a swarm of bees circling about their hive on paths (orbits) of differing size and orientation. Although predicted theoretically back in the 1990s, confirmation of a very tight correlation between velocity dispersion and supermassive black hole mass came in 2000. But until now, that correlation was always assumed to apply to black holes weighing in at millions or billions of solar masses. Using this technique on the NGC 4395, Filippenko and Ho found its mass to be 66,000 solar masses - nearly in the middle of the range found using X-ray luminosity.

This means that the black hole mass/velocity dispersion relation may apply even on scales of relatively small star clusters that contain a central, relatively light, supermassive black hole, Ho said.

The scientists also suggest that NGC 4395 may represent a unique step in the evolution of supermassive black holes, in which a bulge will develop as the black hole grows. The velocity dispersion measurements were based on a star cluster near the central black hole, a possible indication that a bulge may someday form.

Robert Sanders | UC Berkeley
Further information:
http://www.berkeley.edu/news/media/releases/2003/04/10_skinny.shtml

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>