Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond ’pi in the sky’

03.04.2003


Andrei Linde lauds the new era of precision cosmology



For most of us, "inflation" is a term that comes up only in conversations about the economy or flat tires. But for many cosmologists, inflation is the ultimate word in understanding how the universe was created.

In the beginning, according to inflation theory, the universe was tinier than an atom. Then, in an unimaginably brief period of time - .00000000000000000000000000000001 second, to be precise - it expanded ("inflated") to a size trillions of times bigger than what we can observe today.


A handful of scientists in the United States and the former Soviet Union independently came up with the idea of inflationary cosmology in the late ’70s and early ’80s - among them, Russian cosmologist Andrei Linde, now a professor of physics at Stanford; former SLAC researcher Alan Guth, now at the Massachusetts Institute of Technology; Paul Steinhardt, now at Princeton University; and Andreas Albrecht, now at the University of California-Davis.

WMAP experiment

When first proposed more than two decades ago, the inflation hypothesis was considered somewhat exotic, but subsequent experiments have provided a wealth of data verifying many of its underlying principles.

In February, scientists announced the results of the latest cosmological experiment - a NASA satellite called the Wilkinson Microwave Anisotropy Probe (WMAP). Launched in 2001, WMAP captures light waves that were produced during the Big Bang some 13.7 billion years ago. NASA scientists used the light wave data to create a detailed map of the universe that confirms many aspects of inflationary theory while ruling out others.

Cosmic conference

The WMAP experiment was a featured topic of discussion during a conference on cosmic inflation at UC-Davis in March - a three-day event attended by many leading cosmologists including Albrecht, Guth, Linde, Steinhardt and Stephen Hawking of Cambridge University. Researchers presented new findings on a wide range of hotly debated cosmological issues, including string theory - the idea that the universe was built from infinitesimally small string-like particles; multiverses - Linde’s hypothesis that our universe is but one of many interconnected universes that inflate and contract like so many soap bubbles; and the cyclic model - Steinhardt’s competing proposal, which states that there is one universe that undergoes an endless sequence of cosmic epochs that always begin with a "bang" and end with a "crunch."

While conference participants clashed over specific theories, they were unanimous in their praise for the WMAP experiment and what physicists call the new era of precision cosmology, in which speculation about the nature of the universe is confirmed or rejected by solid experimental data.

During a break at the conference, Linde discussed some of the latest trends in cosmology with Stanford Report science writer Mark Shwartz.

Q: How did the results of the WMAP experiment affect cosmic inflation theory?

A: WMAP makes a big leap in confirming many of the predictions of inflationary cosmology, and this places the theory on much firmer ground that it was before.

When inflationary theory was first proposed about 20 years ago, nobody really expected that in our lifetime we would have any serious tools developed to verify whether we were right or wrong. Of course, we knew all the way that we were right, because the theory was beautiful! But it’s one thing to have moral assurance that you’re doing a decent thing, and another thing to see that your predictions are confirmed experimentally.

At today’s conference there was a competing scenario - I would not really call it a theory - the cyclic model of the universe. This is a very exotic model, although it has some chance to work.

Q: Is the idea that the universe recycles over and over?

A: Yes, but the idea that the universe may go in cycles is actually a very old idea. There are many people who have studied an oscillating model of the universe. The problem is that all of them have failed to describe what happens at the moment that the universe collapses. How exactly does it start expanding again?

Many statements made by the authors of the cyclic scenario during the last two years were quite controversial, and some of them were simply incorrect. Also, they do postulate the stage of inflation before the collapse of the universe. Therefore, from my perspective, the cyclic model is just an extremely complicated and, I would say, baroque version of inflationary cosmology.

Q: It seems like string theory also took a few hits at this conference from Stephen Hawking and others.

A: Well, since 1985, string theorists were telling us, "We really know how to do things. We’re going to explain our world soon." This may be right - string theory is very powerful; but it is also immensely complicated - and it changes every two years.

One of the main challenges to string theory has been cosmology. If string theory is unable to explain the present acceleration of the universe, it will be too bad. If string theory is unable to explain inflation, it will be too bad - unless we find some alternative mechanism explaining where the galaxies came from and why our universe is so large and homogenous. So string theory has come under scrutiny and attack by some people.

However, I do not think that there is any reason to be pessimistic with respect to string theory and its relation to cosmology. Just a month ago, physicists Shamit Kachru, Renata Kallosh [both of Stanford], Sandip Trivedi [of India] and I found a way to describe the present acceleration of the universe in string theory. The next challenge is to find a good mechanism describing inflation in string theory. This is a very complicated problem, but I think that it is solvable. In fact, we are working on it now.

Q: Did WMAP throw out some of your own theories or cause you to change them in any way?

A: If an experiment is good, then it not only confirms something but it also rules out something. WMAP tends to rule out one of my lovely theories - I have many! However, a much simpler version of the same theory is quite fine and doing quite well.

So one thing WMAP is capable of is ruling out some theories, leaving alive some others - and that’s wonderful, because in this way, we can really sort out many different versions of the same theory and pick out one that agrees with the observational data better.

But so far, if you ask me, I do not really know of a class of theory that I would consider as a decent competitor of inflation at the moment.


###
By Mark Shwartz

CONTACT: Mark Shwartz, News Service: 650-723-9296, mshwartz@stanford.edu

COMMENT: Andrei Linde, Physics: 650-494-6106, alinde@stanford.edu

Mark Shwartz | EurekAlert!
Further information:
http://map.gsfc.nasa.gov
http://physics.stanford.edu/linde/
http://superstringtheory.com/index.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>