Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside researchers’ discovery of electrostatic spin topples century-old theory

03.04.2003


New physical phenomenon will likely impact atomic physics, chemistry and nanotechnology


UC Riverside researchers Anders Wistrom and Armik Khachatourian first observed the electrostatic rotation in static experiments that consisted of three metal spheres suspended by thin metal wires. When a DC voltage was applied to the spheres, the spheres began to rotate until the stiffness of the suspending wires prevented further rotation. (Photo credit: Anders Wistrom.)



In a discovery that is likely to impact fields as diverse as atomic physics, chemistry and nanotechnology, researchers have identified a new physical phenomenon, electrostatic rotation, that, in the absence of friction, leads to spin. Because the electric force is one of the fundamental forces of nature, this leap forward in understanding may help reveal how the smallest building blocks in nature react to form solids, liquids and gases that constitute the material world around us.

Scientists Anders Wistrom and Armik Khachatourian of University of California, Riverside first observed the electrostatic rotation in static experiments that consisted of three metal spheres suspended by thin metal wires, and published their observations in Applied Physics Letters. When a DC voltage was applied to the spheres they began to rotate until the stiffness of the suspending wires prevented further rotation. The observed electrostatic rotation was not expected and could not be explained by available theory.


Wistrom and Khachatourian designed the study with concepts they had developed earlier. "Experimental and theoretical work from our laboratory suggested that the cumulative effect of electric charges would be an asymmetric force if the charges sitting on the surface of spheres were asymmetrically distributed," said Wistrom. "In the experiments, we could control the charge distribution by controlling the relative position of the three spheres."

Yet, for more than 200 years, researchers have known only about the push and pull of electric forces between objects with like or unlike charges. Since as early as 1854, when Thomson, later to become Lord Kelvin, theorized about an electric potential surrounding charged objects, scientists have concentrated on understanding how electric and magnetic phenomena are related.

"While Thomson’s hypothesis of electric potential has brought enormous benefits when it comes to modern electromagnetic technologies, we now realize that his definition of electric potential was not exact," said Wistrom. "The effects are particularly noticeable when the spheres are very close to one another." (Electric potential is the ratio of the work done by an external force in moving a charge from one point to another divided by the magnitude of the charge.)

Indeed, the general applicability of Thomson’s theory has not been tested experimentally or theoretically until now. In the Journal of Mathematical Physics, Wistrom and Khachatourian recently published the breakthrough that provides the theoretical underpinnings for electrostatic rotation. "It is very satisfying to learn that electrostatic rotation can be predicted by the simple laws of voltage and force that date back at least 200 years," Wistrom said.

He added, "This is curiosity driven research that starts with a simple question and ultimately leads to findings that will likely have impacts across many fields of science and engineering. Because electrostatic rotation without friction leads to spin, we can only speculate how this discovery will provide new approaches to aid the investigation of fundamental properties of matter."

Spin is used in quantum mechanics to explain phenomena at the nuclear, atomic, and molecular domains for which there is no concrete physical picture. "So the discovery of electrostatic rotation and the identification of electrostatic spin as a natural phenomenon opens up an entirely new field of inquiry with the potential for significant advances," Wistrom said.

Iqbal Pittalwala | UCR
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=548
http://www.engr.ucr.edu/chemical/
http://www.engr.ucr.edu/faculty/chemenv/anderswistrom.html

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>