Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-Simple Desktop Device Slows Light to a Crawl

01.04.2003


Though Einstein put his foot down and demanded that nothing can move faster than light, a new device developed at the University of Rochester may let you outpace a beam by putting your foot down on the gas pedal. At 127 miles per hour, the light in the new device travels more than 5 million times slower than normal as it passes through a ruby just a few centimeters long.



Instead of the complex, room-filling mechanisms previously used to slow light, the new apparatus is small and, in the words of its creator, "ridiculously easy to implement." Such a simple design will likely pave the way for slow light, as it is called, to move from a physical curiosity to a useful telecommunications tool. The research is being published in this week’s Physical Review Letters.

The new technique uses a laser to "punch a hole" in the absorption spectrum of a common ruby at room temperature, and a second laser shines through that hole at the greatly reduced speed. A recent successful attempt to slow light to these speeds used a Bose-Einstein condensate (BEC), a state of matter existing 459 degrees below zero Fahrenheit where all atoms act in unison like a single, giant atom. The laser shining through the BEC was slowed to 38 miles per hour, but the system had enormous drawbacks, not the least of which was that the equipment needed to create the BEC wouldn’t fit in the average living room, and the created BEC itself was little bigger than the head of a pin.


"If that was the world’s hardest way to slow down light, then what we’ve found is the world’s easiest way to do it," says Robert Boyd, the M. Parker Givens Professor of Optics at the University. "We can slow light just as much in a space the size of a desktop computer."

Slowing light, at least a little, isn’t as difficult as it may seem. Light passing through a window is 1.5 times slower while moving through the glass, and is slowed slightly less so when passing through water. But to achieve the 5.3-million fold slowdown, Boyd and his team, students Matthew Bigelow and Nick Lepeshkin, used a quantum quirk called "coherent population oscillations" to create a special gap in the frequencies of light that a ruby absorbs. Rubies are red because they absorb most of the blue and green light that strikes them. Shining an intense green laser at the ruby partially saturates the chromium ions that give ruby its red color. They then shine a second beam, called the probe laser, into the ruby. The probe beam has a frequency slightly different than the first laser, and these offset frequencies interact with each other, causing variations the same way two ripples encountering each other on a pond might create waves higher and lower than either one had alone. The chromium ions respond to this new frequency of rhythmic highs and lows by oscillating in sympathy. One consequence of this oscillation is that it allows the probe laser to pass through the ruby, even though the laser is green, but it only allows it to pass 5.3 million times more slowly than light would otherwise travel.

Boyd anticipates that the slow light device will find a role in the telecommunications industry. When two signals from fiber optic lines merge, the two signals may reach the merging router at the exact same moment and need to be separated slightly in time so they can be laid down one after another. Like two cars merging on a highway where one may need to slow down to let another car into the lane, a light-slowing device could help ease congestion on fiber optic lines and simplify the process of merging signals on busy networks.

One drawback to the new technique is currently being scrutinized by Boyd and his coworkers-the duration of the pulses of light that it delays are very long. The BEC experiments were able to delay a short pulse, which meant that a plain pulse of light and a slowed pulse would differ by several times the pulses’ lengths. The Boyd technique slows light by roughly the same amount as the BEC method, but since the pulses are much larger, the delay is only a fraction of the pulses’ size. It would be the difference between slowing an economy car a few feet to let another economy car merge, and a double-tractor trailer slowing only a few feet and expecting another double trailer to merge into the gap. Boyd suspects that different materials may yield slowed light that can transmit shorter pulses that would be more useful for telecommunications work.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/boyd-slowlight.html

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>