Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunquakes Reveal The Solar Furnace

31.03.2003


Most people are familiar with the fact that sensitive instruments known as seismographs can detect earthquakes taking place many hundreds or thousands of miles away. By studying the waves from these tremors, scientists can find out about the conditions deep inside our rocky planet.



In the same way, astronomers are now able to measure millions of sound waves that propagate throughout the Sun, causing it to vibrate or ring like a bell. This technique, known as helioseismology, is the solar equivalent of terrestrial seismology.
On Monday 7 April, Dr. John Leibacher (U.S. National Solar Observatory) will highlight recent results from helioseismology studies during a presentation to the UK/Ireland Solar Physics Meeting in Dublin. These will include new views of the rapidly changing “sub-surface solar weather” and the far side of the Sun, as well as prospects for seeing finer and deeper details within the Sun and other stars.

“Unimaginable 25 years ago, helioseismology today allows us to ‘see’ into the otherwise invisible interior of the Sun,” said Dr. Leibacher. “This has enabled us to overthrow some theories, corroborate others, and pose many more new questions as we finally get a glimpse of how things work.



“We are now testing fundamental theories of physics and astrophysics, substantially advancing our knowledge of the Sun’s structure and dynamics,” he added. “We are also beginning to measure significant temporal variations ranging from the scale of the eleven-year solar sunspot cycle right down to ‘solar weather’ variations on the scale of a day.

“Recent observations have been producing some remarkable results on flows of gas that we can image below the surface of the Sun. For example, we are now seeing strong subsurface winds flowing into groups of sunspots, which change from day to day. These sunspots are the sources of the strong magnetic fields which give rise to explosions on the surface. These, in turn, produce all sorts of terrestrial effects, from the aurora borealis, to fluctuations in navigational satellite signals, to power outages, and in the longer term they may influence Earth’s climate.

“With the discovery of these flows, we may be getting close to understanding the real nature of sunspots, with the tantalising prospect of being able to predict their occurrence. We can already utilise helioseismic imaging to detect sunspot groups on the far side of the Sun, before they rotate onto the visible hemisphere.

“It has been an exhilarating ride and we are excited to see what the next turn will reveal,” he said.

Dr. John Leibacher | alfa
Further information:
http://gong.nso.edu
http://sunearth.gsfc.nasa.gov/eclipse/OH/transit03.html
http://.colorado-research.com/~dbraun/farside-gong

More articles from Physics and Astronomy:

nachricht Nanotechnology for energy materials: Electrodes like leaf veins
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht First quantum photonic circuit with electrically driven light source
27.09.2016 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>